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Preface

Greetings,

Classical Field Theory, A Quick Guide to is compiled based on my inde-
pendent study PH491/2: Topics in Classical Field Theory notes with professor
Robert Bluhm. Sean Carroll’s Spacetime and Geometry: An Introduction to
General Relativity, along with other resources, serves as the main guiding text.
This text also references a number of other texts such as Quantum Field The-
ory by Ryder, Quantum Field Theory by Mandl and Shaw, Gauge Theories Of
The Strong, Weak, and Electromagnetic Interactions by Quigg, A First Book of
Quantum Field Theory by A. Lahiri and P. B. Pal, Quantum Field Theory in a
Nutshell by Zee.

This text is a continuation of General Relativity and Cosmology, A Quick
Guide to. Familiarity with classical mechanics, linear algebra, vector calculus,
and especially general relativity is expected. There will be a quick review of
general relativity where important concepts are revisited and derivations high-
lighted, but familiarity with basic notions such as geodesics, Christoffel symbols,
the Riemann curvature tensors, etc. is assumed.

Note: As a consequence of being developed from a variety of sources, there
will be some overlapping among the sections. However, the objective of each
section is unique.

Enjoy!
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Part 1

Introduction to the
Lagrangian and the
Principle of Least Action

Proposition 1.0.1. All fundamental physics obeys least action principles.

The action S is defined as

S =

ˆ b

a

L dt. (1.1)

where L is called the Lagrangian.

Refer for Farlow’s Partial Differential Equation, page 353, for detailed ex-
planation of Lagrange’s calculus of variations.

I will derive the Euler-Lagrange equation(s) here, but we are not going to
use it in the following subsection for the introduction to field theory for now.

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0. (1.2)

1.1 A Classical-Mechanical Example

In this subsection we take a look at how the Lagrangian formulation of classical
mechanics can give rise to Newton’s second law of motion. In mechanics, the
Lagrangian often takes the form:

L = K − V, (1.3)

7



8PART 1. INTRODUCTION TO THE LAGRANGIAN AND THE PRINCIPLE OF LEAST ACTION

where K is the kinetic energy, and V is the potential energy. Let us consider a
simple example where

K =
1

2
mẋ2 (1.4)

V = V (x). (1.5)

Variations on the Lagrangian gives

δL = δ

(
1

2
mẋ2 − V (x)

)
(1.6)

= mẋδẋ− dV

dx
δx (1.7)

= mẋ ˙δx− dV

dx
δx (1.8)

= m

(
−ẍδx+

d

dt
ẋδx

)
− dV

dx
δx (1.9)

= −mẍδx−m d

dt
ẋδx− dV

dx
δx. (1.10)

It follows that the variations on the action gives

δS =

ˆ b

a

δL dt = −
ˆ b

a

(
mẍ+

dV

dx

)
δx dt. (1.11)

The principle of least action requires δS = 0 for all δx. Therefore it follows that

mẍ+
dV

dx
= 0, (1.12)

which is simply Newton’s second law of motion in disguise.

Before we move on, we should note that in order for the Lagrangian formu-
lation to work in electromagnetism or in general relativity, we need to promote
the Lagrangian to its relativistic version where the Lagrangian is given by

L =

ˆ b

a

L d3x. (1.13)

L is called the Lagrangian density, but we can colloquially refer to it as “the
Lagrangian.” The relativistic action hence takes the form

S =

ˆ
L d4x, (1.14)

where d4x implies integrating over all spacetime.



Part 2

Group Theory: a quick
guide in a quick guide

1. Consider an N-dimensional vector with complex elements. A gauge trans-
formation that takes |z|2 → |z|2 (modulus preserving) is call a U(N) gauge
transformation. The letter “U” denotes “unitary.” These kinds of trans-
formations can be represented by a unitary matrix, which is defined as a
matrix whose conjugate transpose is the same as its inverse. If z → Uz,
then

|z|2 → (Uz)†(Uz) = z†U†Uz = z†z = |z|2, (2.1)

hence modulus preserving.

Note that the transformation eiα is unitary. It is simply a 1×1 unitary
matrix. This immediately implies that complex scalars have a U(1) gauge
invariance.

The special group of U(N) transformations is denoted SU(N), which rep-
resents those with detU = 1.

2. Consider another N-dimensional real-valued-element vector. We denote
the group of orthogonal transformations O(N). Orthogonal transforma-
tions are orthogonal, i.e., length-preserving.

(Ox)>(Ox) = x>O>Ox = x>x = ~x2 (2.2)

Once again, we denote the special group of the O(N) the SO(N) group.
This group represents transformations with detO = 1. The Lorentz group
is a sub-group of SO(N), as the norm is defined differently, nevertheless
it is still length-preserving. We call the Lorentz group SO(3,1), signifying
that one sign is different from the other three.

9
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Part 3

Introduction to Classical
Field Theory

3.1 Relativistic Notation

Throughout this text, we will use the particle physics’ Minkowski spacetime
metric tensor:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.1)

We shall assume knowledge of inner products and index-lowering/raising oper-
ations (please refer to General Relativity & Cosmology: A Quick Guide to) for
more details about this “indexing” business.

Quick notes: the four-dimensional generalization of the gradient operator ∇
transforms like a four-vector. If φ(x) is a scalar function, so is

δφ =
∂φ

∂xµ
δxµ (3.2)

and so

∂φ

∂xµ
≡ ∂µφ ≡ φ,µ . (3.3)

Similarly, we also have something for the contravariant four-vector:

∂φ

∂xµ
≡ ∂µφ ≡ φ,µ . (3.4)

Lastly, we define the d’Alembertian as:

� ≡ ∂2

∂t2
− ∂µ∂µ. (3.5)

11



12 PART 3. INTRODUCTION TO CLASSICAL FIELD THEORY

These will come in handy when we “vary” the action and the Lagrangian - but
more on this later.

3.2 Classical Lagrangian Field Theory

In classical field theory, we are interested in fields, or systems of fields. We can
consider a system which requires several fields, φr(x), where r = 1, . . . , N . We
are also interested in the Lagrangian density, which has a more general form
than we have seen in the first section when we are still in the realm of Newtonian
physics:

L = L(φr, φr,a), (3.6)

where we have used the covariant notation to denote derivatives of φ with re-
spect to the coordinates. The action, as integrated over some region Ω of four-
spacetime, is then given by

S(Ω) =

ˆ
Ω

L(φ, φr,a) d4x. (3.7)

Now, consider a variation in the field

φr(x)→ φr(x) + δφr(x) (3.8)

with the requirement that

δφr(x)0 (3.9)

on the boundary of Ω. As we will explore later on, the field φ can be real or
complex. In the case of the complex field, we can simply treat φ and its complex
conjugate φ∗ as two independent fields. However, whether φ is complex or not
should not matter in what we are doing now, which is requiring that the variation
in the action to take a stationary value, i.e.,

δS = 0. (3.10)

So,

0 = δS =

ˆ
Ω

d4x

{
∂L
∂φr

δφr +
∂L
∂φr,a

δφr,a

}
(3.11)

=

ˆ
Ω

d4x

{
∂L
∂φr
− ∂

∂xa

(
∂L
∂φr,a

)}
δφr +

ˆ
Ω

d4x
∂

∂xa

(
∂L
∂φr,a

∂φr

)
(3.12)

where the second line simply comes from doing integration by parts and the
covariant notation:

δφr,a =
∂

∂xa
δφr. (3.13)



3.3. QUANTIZED LAGRANGIAN FIELD THEORY (PRIMER) 13

Now, the second term on the second line can be re-written under Gauss-Ostrogradsky’s
theorem as

ˆ
Ω

d4x
∂

∂xa

(
∂L
∂φr,a

∂φr

)
=

ˆ
δΩ

d3x
∂L
∂φr,a

∂φr (3.14)

where the ∂a denotes a divergence and δΩ denotes the boundary of the region
in spacetime. But notice that since we require the variation to vanish at the
boundary of Ω, this integral simply vanishes, so the variation in the action
becomes

0 = δS =

ˆ
Ω

d4x

{
∂L
∂φr
− ∂

∂xa

(
∂L
∂φr,a

)}
δφr. (3.15)

Now, because this equality has to hold for any variation δφr, it must be true
that the integrand has to be zero. We arrive at the Euler-Lagrange equation:

∂L
∂φr
− ∂

∂xa

(
∂L
∂φr,a

)
= 0. (3.16)

3.3 Quantized Lagrangian Field Theory (primer)

While the focus of this text is classical field theory, it can be worthwhile to
have a little primer on what quantized Lagrangian field theory looks like. The
main difference between classical and quantized Lagrangian field theory is the
“degree of freedom” in the field. In classical field theory, we deal with systems
with a continuously infinite number of degrees of freedom, i.e. at any point
in spacetime, the field φ is assigned some value. In quantized field theory, we
consider an “approximation” of this by imagining a system with a countable
number of degrees of freedom, and then go to the continuum limit.

Consider flat spacetime, at an instance t = Constant. Let us now make
space discrete by thinking of space as “cells” of equal volume called δxi where
i is just another index. Let the value of the field within each cell by the value
of the field at the center of the cell. So now the system is discrete and can be
described by a discrete set of generalized coordinates:

qri(t) ≡ φr(xi, t) (3.17)

where qri(t) simply represents the value of the field φr at cell xi at time t. Now,
since the idea of the derivative no longer holds in the discrete world, the new
Lagrangian density takes into account the difference in the field values between
neighboring cells. This gives the Lagrangian, L, NOT the Lagrangian density
(the Lagrangian density is denoted L):

L(t) =
∑
i

δxiLi(φr(i, t), φ̇r(i, t), φr(i′, t)) (3.18)
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Now, recall from classical mechanics that the second term in the Euler-Lagrange
equation represents the momentum, so we define the momentum conjugate
to qri as

pri =
∂L

∂q̇ri
(3.19)

=
∂L

∂φ̇r(i, t)
(3.20)

=
∂

∂φ̇r(i, t)

∑
i

δxiLi (3.21)

= πr(i, t)δxi (3.22)

where

πr(i, t) =
∂Li

∂q̇r(i, t)
=

∂Li
∂φ̇r(i, t)

(3.23)

is called the canonical momenta. This definition makes sense by analogy to
classical mechanics, as qri is just the coordinates. So, the Hamiltonian of the
discrete system is given by

H =
∑
i

piq̇ri − L (3.24)

=
∑
i

δxi

{
πr(i, t)φ̇r(i, t)− Li

}
. (3.25)

Now, letting the difference go to zero, i.e, δxi → 0, which makes

πr(x) =
∂Li

∂φ̇r(i, t)
→ ∂Li

∂φ̇r
, (3.26)

i.e.,

πr(i, t)→ πr(xi, t), (3.27)

in which case the Lagrangian turns from a sum into an integral

L(t) =

ˆ
d3xL(φr, φr,a) (3.28)

and so does the Hamiltonian

H =

ˆ
d3xH(x), (3.29)

where the Hamiltonian density is given by (again, turned from a sum into an
integral)

H(x) = πr(x)φ̇r(x)− L(φr, φr,a). (3.30)
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3.4 Symmetries and Conservation Laws (primer)

Recall the Heisenberg’s equation of motion of an operator O(t):

i~
dO(t)

dt
= [O(t), H], (3.31)

where [., .] denotes the commutator. Note that

[O,H] = 0 (3.32)

if O is a constant of motion, which often stem from invariance properties of
systems under groups of transformation such as translation or rotations. These
invariances relate to conservation laws, which we will explore in much more
detail in the next sections. Consider an example with a wavefunction Ψ and an
operator O undergoing a Lorentz transformation:

|Ψ〉 → |Ψ′〉 = U |Ψ〉 (3.33)

O → O′ = UOU†. (3.34)

U is a unitary transformation, which ensure that (i) the operator equations are
covariant, and (ii) probability amplitudes and eigenvalues of operators (observ-
ables) are invariant (unitary matrices are length-preserving).

We can consider another example of a rotation in the complex plane:

U = eiαT (3.35)

where U can be thought of as a unitary, continuous, 1×1 transformation, and
T = T †. For an infinitesimal transformation

U ≈ 1 + iδαT (3.36)

and hence

O′ = OδO = UOU† = (1 + iδαT )O(1− iδαT ), (3.37)

which we can show to be equivalent to

δO = iδα[T,O]. (3.38)

So, if the operator O is the Hamiltonian H, and by requiring the theory to be
invariant under variations, i.e., δH = 0, which means

[T,H] = 0, (3.39)

which implies that T is a constant of motion.

For a field theory derived from a Lagrangian density, we can construct con-
served quantities from the invariance of L under symmetry transformations.
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We have a prescription to do this where very first step is to show that we can
construct a function fa of the field operators and derivatives such that

∂fa

∂xa
= 0. (3.40)

where a are just indices, and x0 ≡ t. We will show how this is possible by first
assuming that, well, it is possible - in which case if we define

F a(t) =

ˆ
d3x fa(x, t) = Constant. (3.41)

(this equation really hints to us that something is conserved over time... hence
a requirement to construct conserved quantities) then by ∂fa/∂xa = 0 we have

dF 0

dt
=

d

dt

ˆ
d3x f0(x, t) (3.42)

=
d

dt
Constant− d

dt
∂jf

j(x, t), j = 1, 2, 3 (3.43)

= −
ˆ
d3x ∂jf

j(x, t) (3.44)

= 0. (3.45)

This means

F 0 =

ˆ
d3x f0(x, t) = Constant, (3.46)

i.e, F 0 is a conserved quantity we are talking about. But what exactly are
the quantities f and F and how can we interpret them? As we go along, it will
make more sense to call fa the conserved current. We will also explore Noether’s
theorem that relates transformation symmetries and conservations later in the
following sections.

Let us apply this result to the transformation (or rather, the variation):

φr(x)→ φ′r(x) = φr(x) + δφr(x). (3.47)
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This leads the variation of the Lagrangian to take the form

δL =
∂L
∂φr

δφr +
∂L
∂φr,a

δφr,a (3.48)

=
∂L
∂φr

δφr +
∂L

∂a(∂φr)
δ∂a(φr) (3.49)

=

(
0 +

∂L
∂(∂aφr)

)
δφr +

∂L
∂a(∂φr)

δ∂a(φr) (3.50)

= δφr∂a
∂L

∂(∂aφr)
+

∂L
∂(∂aφr)

∂aδφr (3.51)

= δφr∂a
∂L

∂a(∂φr)
+

∂L
∂a(∂φr)

∂aδφr (3.52)

=
∂

∂xa

(
∂L

∂a(∂φr)
δφr

)
(3.53)

=
∂

∂xa

(
∂L
∂φr,a

δφr

)
(3.54)

where the third line comes from the Euler-Lagrange equation. Now, since we
require δL = 0, in hopes of deriving a conserved quantity, we can match f to
the last term in the equality:

fa =
∂L
∂φr,a

δφr =
∂L

∂a(∂φr)
δφr, (3.55)

in which case

F a =

ˆ
d3x fa(x, t) =

ˆ
d3x

∂L
∂a(∂φr)

δφr, (3.56)

so

F 0 =

ˆ
d3x

∂L
∂0(∂φr)

δφr (3.57)

=

ˆ
d3x

∂L
∂φ̇r

δφr (3.58)

=

ˆ
d3xπr(x)δφr(x) (3.59)

where πr is the momentum as defined earlier.

Now, some interesting things can happen is our field is complex. Recall that
we can treat a complex fields as two independent fields. Consider the following
transformations:

φr toφ
′
r = eiεφr ≈ (1 + iε)φr (3.60)

φ†r → φ †′r e0ieεφ†r ≈ (1− iε)φ†r (3.61)
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where ε is real, and suppose that L is invariant under this transformation. The
transformations, assuming that ε is very small, give

δφr = iεφr (3.62)

δφ†r = −iεφ†r. (3.63)

If this is the case, then F 0 can be written as

F 0 =

ˆ
d3xπr(x)δφr(x) = iε

ˆ
d3x [πr(x)φr(x)− π†r(x)φ†r(x)]. (3.64)

Now, recall that F 0 is simply some constant. So if we define Q as an “educated”
scalar multiplication of F 0, then Q should also be a conserved quantity just like
F 0, which we have shown. So, let

Q = − iq
~

ˆ
d3x [πr(x)φr(x)− π†r(x)φ†r(x)], (3.65)

where q is just another constant. There are two reasons why we might want to
do this. First, we would like to introduce q because we will ultimately show that
it is the electric charge. And second, we want to introduce the term i/~ because
we can observe that the integrand looks suspiciously like it has something to do
with a commutator. In fact, we will now evaluate the commutator [Q,φr(x)].
However, there are important steps and concepts we need to understand before
doing this.

First, recall the Heisenberg uncertainty principle can be written in commu-
tator form

[x̂, p̂] = i~ (3.66)

where x̂ is just the position operator, and p̂ is the momentum operator. Now,
while we are not actually dealing with position and momentum operators, we
are dealing the canonical coordinate φr and canonical momenta πr, to
which the canonical commutation relations still apply:

[x̂i, π̂j ] = i~δij (3.67)

[π̂i, π̂j ] = [x̂i, x̂j ] = 0 (3.68)

Specifically in our discrete case,

[φr(i, t), πs(j
′, t)] = i~

δrsδ
j′

j

δxj
(3.69)

[φr(j, t), φs(j
′, t)] = [πr(j, t), πs(j

′, t)] = 0. (3.70)

In the continuous case:

[φr(x, t), πs(x
′, t)] = i~δrsδ(x− x′) (3.71)

[φr(x, t), φs(x
′, t)] = [πr(x, t), πs(x

′, t)] = 0. (3.72)
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Now, back to our case. We want to find

[Q,φr(x)]. (3.73)

(more to come... this section in Mandl and Shaw is actually pretty long and
I don’t know what the “narrative” is. I’ll come back to this later.)
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Part 4

Gauge Invariance

4.1 Introduction

From studying Maxwell’s equations, we know that there is more than one way
to choose a vector potential Aµ that describes the same electromagnetic field.
This freedom is called gauge invariance. We will explore the idea of gauge in-
variance in the context of a continuous symmetry of the Lagrangian, which leads
to the conservation of electric charge and other important consequences under
Noether’s theorem.

In the subsequent subsections, we will explore and try to understand the
idea of gauge invariance. We will start out with gauge invariance in classical
electrodynamics. Then, we will look briefly at phase invariance in quantum
mechanics and ultimately field theory.

4.2 Gauge Invariance in Classical Electrodynam-
ics

Recall the second of Maxwell’s equations, written in differential form:

∇ ·B = 0. (4.1)

Following from a vector calculus identity, this means the magnetic field can be
expressed as a curl of some vector potential, called A:

∇ ·B =∇ ·∇×A = 0. (4.2)

Now, we also know that the curl of a conservative vector field is zero, it is also
true that

∇× (A +∇Λ) =∇×A +∇×∇Λ =∇×A. (4.3)

21
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It follows that this new vector potential A +∇Λ also describes the same mag-
netic field B:

B =∇× (A +∇Λ) =∇×A. (4.4)

Next, consider Faraday-Lenz law:

∇×E = −∂B

∂t
. (4.5)

Since B =∇×A, this can be re-written as:

∇×
(

E +
∂A

∂t

)
= 0. (4.6)

This suggests that

E +
∂A

∂t
(4.7)

is some conservative vector field, which we shall identity as −∇V , where V is
the scalar potential:

E +
∂A

∂t
= −∇V. (4.8)

Now, in order for the electric field E to remain invariant under the transforma-
tion

A→ A +∇Λ, (4.9)

we must require that

E′ = E (4.10)

−∇V ′ − ∂A′

∂t
= −∇V − ∂A

∂t
(4.11)

−∇V ′ − ∂

∂t
(A +∇Λ) = −∇V − ∂A

∂t
(4.12)

∇V ′ =∇V +
∂

∂t
∇Λ (4.13)

∇V ′ =∇V +∇
(
∂Λ

∂t

)
, (4.14)

i.e,

V ′ = V +
∂Λ

∂t
. (4.15)

So, the scalar potential has to undergo the transformation

V → V +
∂Λ

∂t
. (4.16)
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Now, if we define the 4-vector potential as

Aµ = (V,A), (4.17)

then everything we have done so far can be encoded in the 4-curl of Aµ, which
we define as the anti-symmetric electromagnetic field strength tensor

Fµν = −F νµ = ∂µAν − ∂νAµ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (4.18)

We can verify that Fµν is invariant under the transformation

Aµ → Aµ − ∂µΛ (4.19)

or

Aµ → Aµ + ∂µΛ, (4.20)

where Λ(x) is an arbitrary scalar field of the coordinate. The fact that many
different four-vector potentials yield the same electromagnetic fields, and thus
describe the same physics, is a manifestation of the gauge invariance of classical
electrodynamics.

From General Relativity & Cosmology, A Quick Guide to..., we have verified
how the Maxwell’s equations in covariant notation:

∂µF
µν = −Jν (4.21)

∂σFµν + ∂µFνσ + ∂νFσµ = 0 (4.22)

where the 4-current Jν is defined as

Jν = (∂,J) (4.23)

give rise to the same Maxwell’s equations in differential form. Now, we look at
two important consequences of these two covariant equations.

First, consider the 4-divergence of the 4-current. We can readily from the
definition of Fµν that

∂νJ
ν = −∂ν∂µFµν (4.24)

= −∂ν∂µ(∂µAν − ∂νAµ) (4.25)

= −∂ν∂µ∂µAν + ∂ν∂µ∂
νAµ) (4.26)

= [−∂ν∂µ + ∂µ∂ν ]∂µAν (4.27)

= 0. (4.28)
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Note that operators ∂ν∂µ and ∂µ∂ν commute because they are just partial
derivatives. This tells us that the electromagnetic current is conserved.

Second,

∂µF
µν = −Jν (4.29)

can be expanded as

∂µ∂
µAν − ∂µ∂νAµ = Jν (4.30)

and re-written as

�Aν − ∂ν(∂µA
µ) = Jν . (4.31)

In the absence of any sources, and in the Lorentz gauge where ∂µA
µ = 0, this

reduces to

�Aν = 0. (4.32)

So Aν satisfies the Klein-Gordon equation for a massless particle (photon).

4.3 Phase Invariance in Quantum Mechanics

It is in fact possible for us to guess Maxwell’s equations from a gauge princi-
ple based on the Schrödinger equation, even in the absence of electrodynamics
knowledge. Let a wavefunction ψ be given, recall that a quantum mechanical
observable is of the form

〈O〉 =

ˆ
ψ∗Oψ dnx, (4.33)

which can be readily verified to be invariant under the global phase rotation:

ψ(x)→ eiθψ(x). (4.34)

This result implies that there is no such thing as “the absolute phase.” Rather,
the only thing we can measure is the relative phase between wavefunctions,
which is unaffected by global rotation.

Now, what about local rotation eiα(x)? Are we free to choose different phase
conventions at different locations? Can quantum mechanics be formulated such
that it is invariant under local, i.e., spatio-dependent phase rotations

ψ → eiα(x)ψ? (4.35)

The answer turns out to be yes, and we shall explore how this is done. Consider
the same local transformation. Since the Schrödinger equation involves the
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derivatives of ψ, we should consider how it transforms:

∂µψ(x)→ ∂µψ
′ = ∂µ

(
eiα(x)ψ(x)

)
(4.36)

= i (∂µα(x))
(
eiα(x)ψ(x)

)
+ eiα(x)∂µψ(x) (4.37)

= eiα(x) [∂µψ(x) + i(∂µα(x))ψ(x)] . (4.38)

So there is an additional gradient term apart from just the phase change as we
have seen before. The problem here is that our current notion of the derivation
is not gauge-covariant, just like how the “normal” derivative does not work
in curved spacetime and has to be replaced by covariant derivative in general
relativity. The same thing is happening here, and the “fix” is also the same.
We shall change our notion of the derivative and define a new, gauge covariant
one as

Dµ ≡ ∂µ + ieAµ (4.39)

such that

Dµψ(x)→ Dµψ
′(x) = eiα(x)Dµψ(x). (4.40)

To find how Aµ transforms (it should because it acts like the Christoffel symbol
in general relativity, connecting the coordinate systems), we let Dµ act on ψ(x)
in their respective frames, and require that

D′µψ
′(x′) = eiα(x)Dµψ(x). (4.41)

First, we look at the rotated frame:

D′µψ
′(x′) =

(
∂µ + ieA′µ

)
ψ(x)eiα(x) (4.42)

= ∂µ

(
ψ(x)eiα(x)

)
+ ieA′µψ(x)eiα(x) (4.43)

= eiα(x)∂µψ(x) + ψ(x)
(
∂µe

iα(x)
)

+ ieA′µψ(x)eiα(x) (4.44)

= eiα(x)
(
∂µψ(x) + iψ(x)∂µα(x) + ieA′µψ(x)

)
. (4.45)

Next, we look at the original frame:

Dµψ(x) = (∂µ + ieAµ)ψ(x) (4.46)

= ∂µψ(x) + ieAµψ(x). (4.47)

Since D′ψ′(x′) = eiα(x)Dµψ(x),

∂µψ(x) + ieAµψ(x) = ∂µψ(x) + iψ(x)∂µα(x) + ieA′µψ(x) (4.48)

ieAµ = i∂µα(x) + eA′µ. (4.49)

Therefore, the transformation rule for Aµ must be

A′µ = Aµ −
1

e
∂µα(x). (4.50)
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This transformation rule has exactly the same form of a gauge transformation
in electrodynamics, which we have discussed in the previous subsection

Aµ → Aµ + ∂µΛ. (4.51)

In fact, Aµ is the electromagnetic field 4-vector. Now, while the form is the same,
there is an additional coupling constant e, which is the charge in natural units
of the particle described by ψ(x). Therefore, the form of the coupling Dµψ(x)
between the electromagnetic field and matter is suggested, if not uniquely dic-
tated, by local phase invariance.

4.4 Significance of Potentials in Quantum The-
ory

In this subsection, we will look at the role of the vector potential Aµ in quantum
mechanics, specifically quantum-mechanical interference phenomena. First, we
will briefly discuss the Aharonov-Bohm effect. Second, we will show that the
vector potential, though regarded as a purely mathematical device which lacks
physical significance, does play a role in quantum mechanics. Third, we will
learn a little bit about path-dependent phase factors in quantum mechanics.

4.4.1 The Aharonov-Bohm Effect & The Physical Vector
Potential

The Ahanorov-Bohm effect shows that the vector potential is not just a mathe-
matical construct to simplify calculations and that it does not have any physical
significance. In 1959, Aharonov and Bohm proposed an experiment to resolve
the question of the physical significance of the vector potential. The gist of the
effect is that fact that wavefunctions of quantum mechanical objects acquire
additional phase when traveling through space with no electromagnetic fields,
only potentials. To show this, we first recall the Schröndinger equation for a
free particle:

− ~2

2m
∇2ψ0 = i~

∂ψ0

∂t
. (4.52)

In the presence of a vector potential, the Schrödinger equation becomes

(−i~∇− eA)2

2m
ψ(x) = i~

∂ψ(x)

∂t
. (4.53)

The solution to this new Schrödinger is

ψ(x, t) = ψ0(x, t)e
iS
~ (4.54)

where

S = e

ˆ
A dx (4.55)
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is a line integral of A along the trajectory of the particle. Now, recall that

∇×A = B, (4.56)

which means it is possible to have A 6= 0 but B = 0. So, if we allow particles
to move in a potential, say around a vertical rod with a solenoidal A, even
without the magnetic field, there will be a phase difference between particles
that go along A and those that go against A. This creates a phase shift between
the wavefunctions, giving rise to interference that can be shifted by turning on
and off the magnetic field. We can argue this rigorously as follows. Let

ψ0(x, t) = ψ0
1(x, t) + ψ0

2(x, t) (4.57)

represent the wavefucntion in the absence of a vector potential, where ψ0
1 and

ψ0
2 denote the components of the beam that pass on the right or left of the

solenoid: When we turn the current on, there is a magnetic field B confined

within the solenoid, i.e., there is no lateral magnetic field B on the side of the
solenoid. So, according to the figure, electrons pass through a magnetic-field-
free region before landing on the detector sheet. However, there exists a vector
potential A outside of the solenoid, as the curl of A has to be such that the
produced magnetic field B is contained within the coil. This can be illustrated
mathematically by Stokes’ theorem:

ˆ
D

B · · · dσ =

ˆ
σD

A · dx. (4.58)

The perturbed wavefunction as a result of passing through this region is

ψ = ψ0
1e
iS1~ + ψ0

2e
iS2/~ (4.59)
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where

Si = e

ˆ
path i

A · dx. (4.60)

It is clear now that the two components of the perturbed wavefunction has a
phase difference of

φ =
S1 − S2

~
=
e

~

˛
A(x) · dx =

e

~

˛
Aµ dxµ, (4.61)

which is dependent on the vector potential A. Therefore, there is a physical
effect from A even though the electrons do not experience any electromagnetic
force.

4.4.2 Path-dependent Phase Factors

Results from the Aharonov-Bohm experiment showed that knowing the electro-
magnetic field strength tensor Fµν is not enough to determine all electrodynamic
phenomena in quantum mechanics. In fact, a phase factor of the form

e
−ie
~
¸
Aµ dxµ (4.62)

must be known in order to give correct predictions. Notice that the given
integral is path-dependent line integral.

4.5 Phase Invariance in Field Theory

In the previous sections we have seen somewhat of the connection between
electromagnetic gauge invariance, and have generalized global phase invariance
to local phase symmetry. Now, we will bring these results into Lagrangian field
theory. Detailed derivations will not be focused here, as the main idea of this
section is to understand what gauge transformation and symmetry are. So, we
will mainly focus on results, and only derivative only when necessary. Consider
the Lagrangian for the free complex scalar field:

L = |∂µφ|2 = m2|ψ|2. (4.63)

We will show that by the principle of least action φ and its complex conjugate
satisfies the Klein-Gordon equation:

(� +m2)φ(x) = 0 (4.64)

(� +m2)φ∗(x) = 0 (4.65)

Next, consider a global phase shift:

φ(x)→ eiqαφ(x) (4.66)

φ∗(x)→ e−iqαφ∗(x). (4.67)
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We can readily verify that the infinitesimal variations are

δφ = iq(δα)φ (4.68)

δ(∂µφ) = iq(δα)∂µφ (4.69)

δφ∗ = −iq(δα)φ∗ (4.70)

δ(∂µφ
∗) = −iq(δα)∂µφ

∗. (4.71)

Global phase invariance requires the Lagrangian to remain unchanged, i.e.,

δL = 0, (4.72)

i.e.,

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂φ∗

δφ∗ +
∂L

∂(∂µφ∗)
δ(∂µφ

∗) (4.73)

=

[
∂µ

∂L
∂(∂µφ)

]
iq(δα)φ+

∂L
∂(∂µφ)

iq(δα)∂µφ− (φ→ φ∗) (4.74)

= iq(δα)∂µ

[
∂L

∂(∂µφ)
φ− ∂L

∂(∂µφ∗)
φ∗
]

(4.75)

≡ 0. (4.76)

We can identity a conserved Noether’s current (we will discuss Noether’s theo-
rem later, but the point here is to show the existence of a conserved quantity)
as:

Jµ = −iq
[

∂L
∂(∂µφ)

φ− ∂L
∂(∂µφ∗)

φ∗
]

(4.77)

= iq [φ∗∂µφ− (∂µφ
∗)φ] (4.78)

≡ iqφ∗∂̄µφ, (4.79)

which satisfies

∂µJ
µ = 0. (4.80)

So, we have shown the connection between global phase invariance and current
conservation. But what if the transformation is local? Consider the following
local phase rotation:

φ(x)→ eiqα(x)φ(x). (4.81)

The same “problem” arises as earlier in the section where we have some extra
terms in the gradient of the scalar field:

∂µφ→ eiqα(x) [∂µφ+ iq(∂µα(x))φ] , (4.82)

which necessitates the introduction of the gauge-covariant derivative

Dµ ≡ ∂µ + iqAµ (4.83)
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such that

Dµφ→ eiqα(x)Dµφ, (4.84)

which demands the Aµ has to transform as

Aµ(x)→ Aµ(x)− ∂µα(x), (4.85)

which we have verified earlier in the section. So, by requiring local phase sym-
metry (replacing ∂µ to Dµ), we require some form of interaction between the
gauge field (vector potential) Aµ and matter.



Part 5

Lagrangian Field Theory in
Flat Spacetime

5.1 Real Scalar Fields

A scalar field can be used to describe particles of spin 0. A scalar field has
only one component, or one degree of freedom, making it the “simplest case” of
the fields we will discuss. Let us now consider a moving field in one dimension,
which has the form

φ(s) ∼ e−ik·x, (5.1)

where

k = Kµ = (K0, ~K) (5.2)

x = Xµ = (X0, ~X). (5.3)

Remember that Kµ is the wavenumber vector, and Xµ is the position vector.
Also recall that the metric is Minkowskian at this point of consideration (we
are still in flat spacetime. General curved spacetime will come later):

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (5.4)

Doing the inner product of Xµ and Kµ gives

φ(x) = e−iK
0t+i~k·~x. (5.5)

We shall choose “natural units” such that ~ = c = 1. This gives

φ(x) = e−iωtei
~k·~x. (5.6)

31



32 PART 5. LAGRANGIAN FIELD THEORY IN FLAT SPACETIME

Now, particles obey the following Einstein mass-energy equivalence:

E2 = m2 + ~p2. (5.7)

But because of our choice of units, E = c~K0 = K0, and ~p = ~~k = ~k. This
gives (

K0
)2 − ~k2 = m2 (5.8)

KµKµ = m2. (5.9)

So, massive particles obey KµKµ = m2, while massless particles obey KµKµ =
0.

Now, we might wonder how we know that the scalar field has the above
form. The answer is derived from, you guessed it, the Lagrangian for a scalar
field. Let us consider a single scalar field in classical mechanics where

Kinetic energy: K =
1

2
φ̇2 (5.10)

Gradient energy: G =
1

2
(∇φ)

2
(5.11)

Potential energy: P = V (φ). (5.12)

Note: I haven’t found a satisfactory explanation to what a “gradient energy” is.
I’ll come back to this term later.

We currently have three terms, but we would like our Lagrangian density to
have the form L = K − V . So, let us combine the kinetic energy and gradient
energy terms into one:

K ′ =
1

2
φ̇2 − 1

2
(∇φ)

2
. (5.13)

We shall verify that

K ′ = −1

2
(∂µφ) (∂µφ) =

1

2
φ̇2 − 1

2
(∇φ)

2
. (5.14)

This turns out to be quite straightforward:

(∂µφ) (∂µφ) = ηµν (∂µφ) (∂νφ) (5.15)

= (∂0φ)
2 − (∂jφ)

2
(5.16)

= φ̇2 − (∇φ)
2
. (5.17)

So, a good choice of Lagrangian for our scalar field would be

L ∼ K ′ − V = −1

2
(∂µφ) (∂µφ)− V (φ). (5.18)
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In order for the action to be extremized, i.e. δS = 0, we require that δL = 0 for
any δφ. Varying L with respect to φ gives

δL = δ

(
−1

2
(∂µφ) (∂µφ)− V (φ)

)
(5.19)

= −1

2
(∂µδφ ∂

µφ+ ∂µφ∂
µδφ)− dV (φ)

dφ
δφ (5.20)

= −∂µδφ ∂µφ−
dV (φ)

dφ
δφ. (5.21)

Now, integration by parts tells us that

∂µ (∂µφ δφ) = ∂µ∂µφ δφ+ ∂µδφ ∂
µφ. (5.22)

So,

∂µδφ ∂
µφ = ∂µ (∂µφ δφ)− ∂µ∂µφ δφ. (5.23)

Therefore, variations on L is:

δL = − [∂µ (∂µφ δφ)− ∂µ∂µφ δφ]− dV (φ)

dφ
δφ. (5.24)

It follows that the action is

S =

ˆ b

a

δL d4x =

ˆ b

a

{
− [∂µ (∂µφ δφ)− ∂µ∂µφ δφ]− dV (φ)

dφ
δφ

}
d4x. (5.25)

The total derivative term ∂µ (∂µφ δφ) vanishes as we require the variations δφ =
0 at a and b. This leaves us with

S =

ˆ b

a

{
∂µ∂µφ−

dV (φ)

dφ

}
δφ d4x. (5.26)

We require that this equality hold for any variation δφ. So it must be true that

∂µ∂µφ−
dV (φ)

dφ
= 0. (5.27)

We introduce a new operator, the d’Alembertian:

� ≡ ∂µ∂µ ≡ ∂ν∂µ ≡
∂2

∂t2
− ~∇2. (5.28)

The requirement we just derived now becomes the Klein-Gordon equation:

�φ− dV

dφ
= 0. (5.29)

Remember that we are working with Lagrangian for a scalar field. It can easily
be shown the connection between the Klein-Gordon equations and Newton’s
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second law of motion, by separating the temporal and spatial derivatives from
the d’Alembertian and rewriting a few things:

�φ− dV

dφ
= φ̈− ~∇2φ− dV (φ)

dφ
= 0. (5.30)

We can see the time second derivative on the field φ and the φ-derivative on the
potential field resemble “acceleration” and “force” in Newton’s second law.

Let us return to our original question of why a scalar field has the form
φ ∼ e−ik·x. From our derivation of the Klein-Gordon equation, we observe that
a scalar field φ must be a solution to the Klein-Gordon equation. Now, we verify
that

φ = e−ik·x (5.31)

is a solution to the KG equation. Note that even though we are concerned
with real scalar field for the time being, it is reasonable to have φ of that
particular complex form, simply because it makes taking derivatives easier. One
can certainly work with only the real part of φ and get the same result. Now,
to check when φ satisfies the Klein-Gordon equation, we simply unpack the
d’Alembertian and attack the derivatives step-by-step. The first derivative is

∂µφ = ∂µ
(
e−ik·x

)
(5.32)

= −i∂µ (k · x) e−ik·x (5.33)

= −i∂µ (KνX
ν) e−iKαX

α

(5.34)

= −iKν ∂µX
ν φ (5.35)

= −iKνδ
ν
µφ (5.36)

= −iKµφ (5.37)

Next, we attack the second derivative:

∂µ∂µφ = ηµν∂ν∂µφ (5.38)

= ηµν∂ν (−iKµφ) (5.39)

= −iKµη
µν (−iKνφ) (5.40)

= (−i)2KµKµφ. (5.41)

If KµKµ = m2 (as we have shown before), then

�φ+m2φ = (−m2 +m2)φ = 0, (5.42)

which satisfies the Klein-Gordon equation. So, as long as KµKµ = m2 is sat-
isfied, φ of the given form is a solution to the KG equation and is a legitimate
scalar field.
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Without knowing the solution to the Klein-Gordon equation, we can also
verify that the Klein-Gordon equation is the equation of motion via the Euler-
Lagrange equation, which says that

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (5.43)

Recall the Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− V (φ), (5.44)

we get

∂L
∂φ

= −dV
dφ

(5.45)

∂L
∂(∂µφ)

=
1

2
∂µφ. (5.46)

So the Euler-Lagrange equation gives:

−dV
dφ
− 1

2
∂µ(∂µφ) = 0. (5.47)

If we reasonably take

V (φ) =
1

2
m2φ2, (5.48)

then we get −m2φ−�φ = 0, i.e.

(� +m2)φ = 0. (5.49)

5.2 Complex Scalar Fields and Electromagnetism

5.2.1 Gauge transformation of the first kind - Global Sym-
metry

In this section, we will see how things “come together.” As real scalar fields de-
scribe massive neutral particles and how vector fields describe massless photons,
complex scalar fields somehow fills in and completes the picture by bringing in
the charge and somehow joins the real scalar and vector field pictures. At the
end of this section, we will see how the “full theory” where the electromagnetic
field with charge is described by a single Lagrangian.

If our scalar field is complex, we can think of it and its complex conjugate
as:

φ =
φr + iφi√

2
(5.50)

φ∗ =
φr − iφi√

2
. (5.51)
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Or, we can think of φ and φ∗ as independent fields. Since the Lagrangian has
to be real, plugging φ and φ∗ into the Lagrangian introduced in the previous
section gives:

L = (∂µφ)(∂µφ)∗ −m2φ∗φ. (5.52)

Without much inspection, we can see that the fields satisfy the Klein-Gordon
equation: {

(� +m2)φ = 0

(� +m2)φ∗ = 0.
(5.53)

Now, we can ask ourselves: “Is this Lagrangian invariant under the transforma-
tion

φ→ e−iΛφ (5.54)

φ∗ → eiΛφ∗, (5.55)

where Λ is a constant?” Again, by inspection, the answer is yes, simply because
the transformation is nothing but an orthogonal rotation (length preserving).
And since because we changed the field the same way everywhere by a rotation
induced by e±iΛ while the Lagrangian remains invariant, we say that the theory
has a global U(1) symmetry. Global transformations like this one are called
gauge transformation of the first kind.

5.2.2 Gauge transformation of the second kind - Local
Symmetry

Now, consider the case where the rotation operation e±iΛ has a spatio-dependence,
i.e., Λ → Λ(x). We call this a gauge transformation of the second kind. This
leads to the fact that φ transform differently at different places. We want our
theory to also be invariant under this “local” transformation. But first, we have
to show that our previous Lagrangian no longer retains its gauge symmetry and
try to come up with ways to “fix” the theory. Let us say that φ transforms as
φ→ φeiΛ(x), then

∂µφ→ ∂µ(φeiΛ(x)) = i(∂µΛ(x))φ+ eiα∂µφ. (5.56)

It is already clear that

(∂µφ)(∂µφ)∗ 6→ (∂µφ)(∂µφ)∗eiΛ(x) (5.57)

since there will always be some Λ(x)-dependent residual terms. We can stop here
and surrender, but we can also “fix” our notion of the derivative (just like what
we did in general relativity), introducing the gauge-covariant derivative:

Dµ = ∂µ + iqAµ, (5.58)
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where q is the charge, which acts as a coupling term like the Christoffel symbols
in general relativity, and Aµ is the vector potential, which is also the gauge field
that has symmetry:

Aµ ∼ Aµ + ∂µΛ. (5.59)

Once again, recall we have discussed in the gauge invariance section. By adding
the 4-dimensional gradient of a scalar field Λ (so adding the ∂µΛ term), we are
not changing the 4-dimensional curl of Aµ, i.e. the electromagnetic field tensor
Fµν is divergence-free. We can refer to section on gauge invariance for more
details about this is true. But focusing on the results here, if we cleverly (once
again) pick Λ such that

Λ(x) = −α(x)

q
(5.60)

then with the gauge transformations{
φ→ φeiΛ(x)

Aµ → Aµ − 1
q∂µΛ(x)

(5.61)

the new derivative Dµφ = (∂µ + iqAµ)φ is transformed into

→
(
∂µiq

[
Aµ −

1

q
∂µΛ(x)

])
φeiΛ(x) (5.62)

= eiΛ(x) (∂µφ+ i(∂µΛ(x)φ) + iqAµφ− i(∂µΛ(x))φ) (5.63)

= eiΛ(x)(∂µφ+ iqAµφ) (5.64)

= eiΛ(x)Dµφ. (5.65)

So, Dµφ transforms correctly. Since we have added the electromagnetic vector
potential to the theory, adding the electromagnetic field tensor term completes
the classical field theory for the charged scalar field in electromagnetism.

L = |Dµφ|2 −m2|φ|2 − 1

4
FµνF

µν (5.66)

In the next section, we will look at the underlying motivations for the choices
we have made regarding “fixing” our notion of the derivatives and Λ.

5.2.3 Motivations in the derivation of the E&M Lagrangian

In the previous section, we have look at the basics of gauge transformations
and global and local symmetry. We have also come across a number of “clever”
choices, but those choices have so far been unjustified. in this section, we will
try to develop an understanding for “why” the complete Lagrangian of electro-
magnetism and matter has the following form

L = |Dµφ|2 −m2|φ|2 − 1

4
FµνF

µν . (5.67)
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First, we revisit the gauge transformation of the second kind, i.e., local gauge
transformation where

φ→ φ′ = eiΛ(x)φ ≈ (1− iΛ(x))φ (5.68)

for Λ(x)� 1. Variations on the field give

δφ = −iΛφ (5.69)

and

∂µφ→ ∂µφ− i(∂µΛ(x))φ− iΛ(x)(∂µφ). (5.70)

Therefore

δ(∂µφ) = −iΛ(∂µφ)− i(∂µΛ)φ. (5.71)

We can do the same with the complex conjugate of φ, giving

δφ∗ = iΛφ∗ (5.72)

δ(∂µφ
∗) = iΛ(∂µφ

∗) + i(∂µΛ)φ∗. (5.73)

Assuming that the Lagrangian for electromagnetism takes the form like that of
the massive scalar field case:

L = (∂µφ)(∂µφ∗)−m2φ∗φ, (5.74)

variations on the Lagrangian gives

δL = δ[(∂µφ)(∂µφ∗)]−m2δ(φ∗φ) (5.75)

= [δ(∂µφ)](∂µφ∗) + (∂µφ)[δ(∂µφ∗)]−m2[(δφ)φ∗ + φ(δφ∗)]. (5.76)

We can readily verify that (δφ)φ∗ + φ(δφ∗) is zero by the above identities:

(δφ)φ∗ + φ(δφ∗) = −iΛφφ∗ + φiΛφ∗ = 0. (5.77)

So we’re left with

δL = [−iΛ(∂µφ)− i(∂µΛ)φ](∂µφ∗) + (∂µφ)[iΛ(∂µφ
∗) + i(∂µΛ)φ∗] (5.78)

= −iΛ(∂µφ)(∂µφ∗)− i(∂µΛ)φ(∂µφ∗) (5.79)

+ iΛ(∂µφ∗)(∂µφ) + iφ∗(∂µΛ)(∂µφ) (5.80)

= iφ∗(∂µΛ)(∂µφ)− i(∂µΛ)φ(∂µφ∗) (5.81)

= iφ∗(∂µΛ)(∂µφ)− i(∂µΛ)φ(∂µφ∗) (5.82)

= (∂µΛ)[iφ∗∂µφ− iφ∂µφ∗]. (5.83)

By Noether’s theorem, which we will into much more detail in the following
sections:

Jµ =
∂L

∂(∂µφ)
(−iφ) +

∂L
∂(∂µφ∗)

(iφ∗) (5.84)

= i(φ∗∂µφ− φ∂µφ∗). (5.85)
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So the variation in the Lagrangian becomes

δL = (∂µΛ)Jµ. (5.86)

Now, our ultimate goal is achieve some sort of invariance. But by the look of δL
we are already failing to have invariance. However, we can fix this, by adding
terms to the Lagrangian such that this Jµ term goes away (this is exactly the
idea of gauge invariance which we have discussed earlier). So, consider

L1 = −eJµAµ (5.87)

= −e[iφ∗∂µφ− iφ∂µφ∗]Aµ. (5.88)

where we have introduced the vector potential Aµ. Recall in the section on
gauge invariance we have require Aµ to transform as

A′µ = Aµ +
1

e
∂µΛ (5.89)

in order to achieve gauge invariance. (Note that there is a subtle sign change
due to different sign conventions, but the idea is the same). Thus variations on
Aµ is given by

δAµ = A′µ −Aµ =
1

e
∂µΛ (5.90)

Plug this into the variation of this extra term L1 we get

δL1 = −δ[eJµAµ] (5.91)

= −e(δJµ)Aµ − eJµ(δAµ) (5.92)

= −e(δJµ)Aµ − Jµ∂µΛ (5.93)

We shall compute δJµ here:

δJµ = iδ(φ∗∂µφ− φ∂µφ∗) (5.94)

= i[(δφ∗)∂µφ+ φ∗∂µ(δφ)− φ(∂µδφ∗)− (δφ)∂µφ∗] (5.95)

= i[iΛφ∗∂µφ− φ∗∂µ(iΛφ)− φ∂µ(iΛφ∗) + iΛφ∂µφ∗] (5.96)

= −Λφ∗∂µφ+ φ∗∂µ(Λφ) + φ∂µ(Λφ∗)− Λφ∂µφ∗ (5.97)

= −Λφ∗∂µφ+ Λφ∗∂µφ+ φ∗φ∂µΛ + φΛ∂µφ∗ + φφ∗∂µΛ− Λφ∂µφ∗ (5.98)

= 2φ∗φ∂µΛ. (5.99)

So, variations on the modified Lagrangian is now

δL+ δL1 = (∂µΛ)Jµ − e(2φ∗φ∂µΛ)− Jµ(∂µΛ) (5.100)

= −2eAµφ
∗φ(∂µΛ). (5.101)

But it looks like we are still achieving invariance. So, we have to repeat the
procedure, adding more terms to the Lagrangian. Let’s call this additional term
L2, defined as

L2 = e2AµA
µφ∗φ. (5.102)
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Varying L2 gives

δL2 = δ(e2AµA
µφ∗φ) (5.103)

= e2φ∗φAµδA
µ + e2φ∗φAµδAµ (5.104)

= 2e2Aµ(∂µΛ)φ∗φ. (5.105)

Now, we should achieve invariance:

δL+ δL1 + δL2 = −2eAµφ
∗φ(∂µΛ) + 2e2Aµ(∂µΛ)φ∗φ (5.106)

= 0. (5.107)

The total Lagrangian L+ L1 + L2 is now invariant under local gauge transfor-
mation, but at the price of introducing the vector potential Aµ, which couples
to the current Jµ of the complex φ field. Now, Aµ must also be contributing to
the Lagrangian, so we need to take into account for that contribution by requir-
ing an additional (invariant) term that involves nothing but the electromagnetic
field strength tensor:

L3 = −1

4
FµνFµν . (5.108)

So, the total Lagrangian becomes:

Ltot = L+ L1 + L2 + L3 (5.109)

= (∂µφ)(∂µφ∗)− ie(φ∗∂µφ− φ∂µφ∗)Aµ (5.110)

e2AµA
µφ∗φ−m2φ ∗ φ− 1

4
FµνFµν . (5.111)

Some simplification gives

Ltot = (∂µφ+ ieAµφ)(∂µφ∗ − ieAµφ∗)−m2φ∗φ− 1

4
FµνFµν . (5.112)

Now, the form of the Lagrangian is starting to look like the Lagrangian we
wish to achieve in the beginning of this section. Indeed, we can see that our
derivative has been slightly modified to include the vector potential:

∂µ → ∂µ + ieAµ. (5.113)

So we if define a new operator

Dµ = ∂µ + ieAµ, (5.114)

then we see that it is indeed invariant under local gauge transformations (as
already been shown numerous times in this text). It is worthwhile, however, to
show again, but in a slightly different light:

δ(Dµφ) = δ(∂µφ) + ie(δAµ)φ+ ieAµδφ (5.115)

= −iΛ(∂µφ+ ieAµφ) (5.116)

= −iΛ(Dµφ). (5.117)
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In fact, this is true even without the approximation Λ � 1. To show this, we
also have to take into account the transformation of Aµ → A′µ, i.e., the opera-
tors are not the same at different locations in space. But it can easily be done.
In fact, we have shown this in the section on gauge invariance.

Now, we are getting really close to coming a full circle to justify the numerous
of “clever choices” in the previous sections. However, we shall still be careful
and look at a subtle difference:

Dµ ≡ ∂µ + ieAµ (5.118)

if applied to the scalar field φ, while

Dµ ≡ ∂µ − ieAµ (5.119)

if applied to the complex conjugate scalar field φ∗. But the operator itself
shouldn’t know in advance what kind of function is being fed to it so that it
can change accordingly. Also, the role of “complex conjugate” is exchangeable,
thus a “sign-varying” definition of Dµ certainly does not work. To resolve this,
we must recognize this: because e is the electric charge, changing the sign of
e changes the sign of the charge. Now, because this goes hand-in-hand with
the field φ and its complex conjugate φ∗, i.e., whenever we have the complex
conjugate, the sign of e in the operator changes, we might as well associate the
field φ with having the charge e, and the field φ∗ with having the charge −e. To
summarize, we simply note: φ describes a field with charge e, and φ∗ describes
a field with charge −e. So, we can now be satisfied with the Lagrangian for
electromagnetism and classical field theory (in flat spacetime):

L = (Dµφ)(Dµφ∗)−m2AµA
µ − 1

4
FµνFµν (5.120)

5.2.4 A few remarks

Here are a few key concepts we should clarify and make sure we understand
correctly. These can be treated as important takeaways from this section. It
also helps to have some “intuitive” grounding and a good “narrative” in mind
when we talk about the theory. Sometimes, while the mathematics is straight-
forward, it can be tremendously difficult to interpret a theory and “understand”
it. So, while not as technical as the other sections, this subsubsection serves to
summarize and hopefully explain why we did what we have done and defined
what we have defined. I hope this section sort of “brings everything together”
before we move on to other topics.

1. Dµφ
∗ is a covariant derivative of φ∗ not because we conjugated Dµφ but

because it transforms in the same way that φ∗ does under gauge transfor-
mations. We can readily verify this (in fact, we have verified this many
times).
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2. How can we be sure that Aµ is actually the vector potential? This is pos-
sibly a question that a careful reader would ask right from the beginning.
But no worries, as we know for sure that Aµ must be the (compensating)
vector potential. Why? Because of the definition of the electromagnetic
field strength tensor as the 4-dimensional curl of Aµ.

3. As a result of the previous item, we have a new interpretation for the elec-
tromagnetic field: The electromagnetic field is the gauge field which has
to be introduced to guarantee invariance under local U(1) gauge transfor-
mations.

4. The Maxwell’s inhomogeneous equations (i.e., not in a vacuum, i.e., there
exists some current J µ) arise as a result of varying the vector potential
Aµ, i.e., by requiring that Aµ satisfy the Euler-Lagrange equation for Aµ:

∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= 0 (5.121)

where the Lagrangian is what we just derived

L = (Dµφ)(Dµφ)−m2AµA
µ − 1

4
FµνFµν (5.122)

= (∂µφ+ ieAµφ)(∂µφ∗ − ieAµφ∗)−m2φ∗φ− 1

4
FµνFµν (5.123)

we obtain (which the unconvinced and diligent reader can and should
readily verify by attacking the Lagrangian with derivatives)

∂νF
µν = −ie(φ∗∂µφ− φ∂µφ∗) + 2e2Aµ|φ|2 (5.124)

= −ie(φ∗Dµφ− φDµφ∗) (5.125)

= −eJ µ, (5.126)

where the definition of the covariant current J µ

J µ ≡ φ∗Dµφ− φDµφ∗ (5.127)

is “covariantly motivated” by the definition of Jµ. Now, because

∂µ(∂νF
µν) = ∂µ∂ν(∂µAν − ∂νAµ) (5.128)

= ∂µ∂ν∂
µAν − ∂µ∂ν∂νAµ (5.129)

= ∂µ∂ν∂
µAν − ∂ν∂µ∂µAν (5.130)

= 0, (5.131)

it must also be true that

∂µJ µ = 0, (5.132)

i.e., the covariant current is conserved when the electromagnetic field is
present, NOT the current Jµ.



5.3. VECTOR FIELDS AND PHOTONS 43

5. We have shown very early in the section that the electromagnetic field
is massless, but it is worth emphasizing this point. If we add the mass
term:

LM = M2AµA
µ (5.133)

to the Lagrangian, we no longer get invariance under gauge transforma-
tion. This means that gauge invariance requires the electromagnetic field
- the gauge field - to be massless. This turns out to be very important
particle physics.

6. What does the charge e do in the theory? We can indeed think of e as a
coupling constant, as we have discussed. If we look at the Lagrangian, we
can see clearly that the field φ couples to the electromagnetic field with
strength e. So, it seems that the electric charge plays two roles in theory:
(i) measuring the strength with which a particle interacts with electric and
magnetic fields, and (ii) serves as a conserved quantity. These two roles
in fact arise as a consequence of the “gauge principle,” which is also very
important in particle physics.

5.3 Vector Fields and Photons

In this section, we will see how electromagnetism naturally arises from the
previous section where we demand invariance of the action under gauge trans-
formation of the second kind (local rotations). In particular, we will work with
a Lagrangian density that describes the massless and neutral photon, and see
how variations on the action gives rise to the Maxwell’s equations. We will also
confirm that fact that photons must be massless in the theory, by enforcing
conditions on the vector potential Aµ. The section is more of synopsis of the
methods we have learned so far about variations on the action, gauge transfor-
mations, symmetries, and invariances. The goal of this section is to show the
theory actually works to describe a physical, real, particle. We will be working
with vector field in the formulation the action, but the main principles regarding
variations and gauge-stuff are the same.

Vector fields describe particles of spin 1 such as photons. Unlike real scalar
fields φ where there is only one degree of freedom, a vector field is represented
by Aµ with µ = 0, 1, 2, 3, hence having 4 degrees of freedom. Electromagnetism
is a field theory where the relevant field is a vector field, Aµ, called the vector
potential.

Aµ = (A0, ~A). (5.134)

The first component of the vector potential, A0 is the electrostatic potential V
where ~E = −~∇V . The other spatial components of Aµ, forming ~A, form the
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vector potential from which the magnetic field and full electric field is derived:

~B = ~∇× ~A (5.135)

~E = −~∇V − ∂ ~A

∂t
(5.136)

Let us consider the following Lagrangian density:

L = −1

4
FµνF

µν − jµAµ, (5.137)

where jµ = (ρ, ~J) is a combination of the charge density and current density.
The electromagnetic field strength tensor is given by:

Fµν = ∂µAν − ∂νAµ (5.138)

=


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (5.139)

With this definition, we can also have an equivalent definition:

Fµν = ∂µAν − ∂νAµ. (5.140)

Recall the cyclic identity (this can be readily verified - we in fact have covered
this in the GR notes):

∂λFµν + ∂µFνλ + ∂νFλµ = 0. (5.141)

We can easily show that this identity yields two of four Maxwell’s equations:

~∇× ~E = −∂
~B

∂t
(5.142)

~∇ · ~B = 0. (5.143)

The remaining Maxwell equations come from varying the action and minimizing
the action: δS = 0 with respect to the vector potential Aµ. Similar to what we
have done before, we want to vary the Lagrangian. Now, the E&M Lagrangian
has two terms. The term involving the vector potential is simple:

δ (jµAµ) = jµ δAµ (5.144)

true for all δAµ, so if the field strength tensor is zero, then jµ = 0. The term
involving the field strength tensor is a little more complicated, but certainly
doable:

δ

(
−1

4
FµνFµν

)
=
−1

4
δ [(∂µAν − ∂νAν) (∂µAν − ∂νAµ)] (5.145)

=
−1

2
δ (∂µAν ∂µAν − ∂µAν ∂µAν) (5.146)

=
−1

2
(∂µ δAν ∂µAν + ∂µAν ∂µ δAν − ∂µ δAν ∂µAν − ∂µAν ∂µ δAν) .

(5.147)
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Raising and lowering indices gives

δ

(
−1

4
FµνFµν

)
=
−1

2
(∂µ δAν ∂µAν + ∂νAµ ∂

ν δAµ − ∂µ δAν ∂µAν − ∂νAµ ∂ν δAµ)

(5.148)

= ∂ν δAµ ∂νAµ − ∂µ δAν ∂µAν . (5.149)

We can again integrate by parts on the two terms similar to the following steps

∂ν δAµ ∂νAµ = ∂ν(∂µAν δA
µ)− (∂ν∂µAν)δAµ = ∂µ(∂νAµ δAν)− (∂ν∂µAν)δAµ

(5.150)

∂µ δAν∂
µAν = ∂µ(∂µAν δAν)− ∂µ(∂µAν) δAν = ∂µ(∂µAν δAν)− ∂µ(∂µAν) δAν .

(5.151)

and eliminate the total derivative from the action integral. Assuming that the
term with the current density and vector potential is zero, we are eventually
(after lowering/raising the indices correctly, of course) left with the requirement

∂µ(∂µAν) δAν − (∂ν∂µAν)δAµ ≡ (�Aµ − ∂µ∂νAν) δAµ = 0 (5.152)

for all δAµ, which forces the following identity:

�Aµ − ∂ν∂µAν = �Aµ − ∂ν∂µAν = ∂ν(∂νAµ − ∂µAν) = ∂νF
µν = 0. (5.153)

Now, with the current density and vector potential terms, we get the require-
ment

∂νF
µν = jµ. (5.154)

This identity gives the remaining two Maxwell’s equations.

We can look at photons as an example. Photons do not carry a curren-
t/charge, so jµ = 0. Therefore the equation of motion can be derived from
just

∂νF
µν = 0. (5.155)

Now, we have an interesting problem to think about: We know that photons
can have 2 independent transverse polarizations, i.e. there are 2 massless modes
for photons. However, Aµ has 4 degrees of freedom, not 2. So why does our
theory require more than 2 degrees of freedom to describe a physical quantity
that only has 2 degrees of freedom? The answer to this is that there are 2
degrees of freedom in Aµ that don’t matter. The first is the A0 factor - the
electrostatic potential. Why A0 does not matter in describing photons can be
illustrated if we look at the case where µ = 0:

�A0 − ∂0 ∂
νAν = ∂0∂0A0 + ∂j∂jA0 − ∂0∂

0A0 − ∂0∂
jAj (5.156)

= ∂j∂jA0 − ∂0∂
jAj (5.157)

= 0. (5.158)
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We see that A0 is not a propagating mode, or the ghost mode, or the auxiliary
mode. This is actually a good thing in our theory. In fact, the Lagrangian is
actually chosen such that the time second derivative vanishes.

Now that we have sort of explained why one degree of freedom of Aµ does not
matter. What about the other one that shouldn’t matter? The short answer to
this is the keyword gauge symmetry in the theory. If we look back at how the
field strength tensor is defined as the 4-dimensional curl of the vector potential
Aµ:

Fµν = ∂µAν − ∂νAµ. (5.159)

As an aside, it makes sense to define the 4-dimensional curl this way, because
the curl of a 2-vector field in two dimensions gives a scalar (a zero-index object),
the curl of a 3-vector field in three dimensions gives a 3-vector field (a one-index
object). So it is reasonable to define the 4-dimensional curl of a 4-vector field
as a tensor (a two-index object). Now, back to our problem. We should also
attempt to gauge transform

Aµ → A′µ = Aµ + ∂µΛ(x), (5.160)

then we observe that

F ′µν = ∂µ(Aν + ∂νΛ(x))− ∂ν(Aµ + ∂µΛ(x)) (5.161)

= ∂µAν − ∂νAµ (5.162)

= Fµν , (5.163)

i.e. there is a way to choose Λ(x) such that we eliminate one Aµ mode, leaving
just 4-1-1=2 modes.

The goal of the above gauge transformation is to pick a Λ(x) to remove an
extra degree of freedom in the theory. Let us suppose that ∂µAµ 6= 0, i.e. Aµ
is NOT divergence-free. We can pick Λ(x) such that after the transformation,
∂µA′µ = 0. Let’s start from the very beginning, repeat what we just done earlier:

A′ν = Aν + ∂νΛ. (5.164)

It follows that

∂νA′ν = ∂ν(Aν + ∂νΛ) (5.165)

= ∂νAν + ∂ν∂νΛ (5.166)

= ∂νAν + �Λ. (5.167)

This suggests that if we pick Λ(x) such that �Λ(x) = −∂νAν then in this gauge
∂nuA′ν = 0. After that, we can just drop the prime and get ∂νAν = 0. As a
consequence, in this fixed gauge, the equations of motion can be deduced from{

�Aµ = 0

∂νAν = 0
(5.168)
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each of which adds one constraint, reducing the degree of freedom by 1. To
solve for Aµ, we can assume the form of Aµ:

Aµ = εµe
−ik·x, (5.169)

where εµ is called the polarization vector. Now, let us work with the first
constraint �A = 0. We can verify (below) that this constraint requires KµKµ =
0, i.e. Kµ is a null vector in flat Minkowskian spacetime, i.e. it is light-like.

�Aµ = ∂µ∂
µAµ (5.170)

= ∂µ
(
ηµν∂νεµe

−ik·x) (5.171)

= ∂µ
[
εµη

µν
(
∂νe
−ik·x)] (5.172)

= ∂µ
[
εµη

µν(−iKµ)
(
e−ik·x∂νX

µ
)]

(5.173)

= ∂µ
[
εµη

µν(−iKµ)
(
e−ik·xδµν

)]
(5.174)

= (−iKν)∂µAµ (5.175)

= 4(−iKν)(−iKµ)Aµ (5.176)

= 4(−i)2KµK
µAµ (5.177)

= 0 if KµK
µ = 0. (5.178)

This requirement implies that the vector field Aµ is massless (KµKµ = 0 rather
than m2 like in the scalar field example), which is a good thing, since we are
working with electromagnetism and these mathematical objects ultimately de-
scribe electromagnetic waves - photons.

Next, the other constraint ∂νAν = 0 motivates us to choose Λ such that

�Λ = −∂νAν (5.179)

so that ∂νA′ν = 0. However, this isn’t enough information to choose Λ, because
�Λ = −∂νAν alone cannot fix Λ. We also have to look at the gauge transfor-
mation of Aµ and make sure that the auxiliary part A0 vanishes, then we have
enough information to pick Λ. Let us start with the form of Aµ:

Aµ = εµe
−ik·x. (5.180)

We know that �Aµ = 0, so if we pick

Λ = λe−ik·x (5.181)

then we are guaranteed �Λ = 0 = ∂νAν . So that is quite nice. But what is λ?
We can only set λ if we fix the value of A0. It makes sense to set A0 = 0 so that
it vanishes. With this, we can perform a gauge transformation on A0, set it to
zero, and find λ:

A0 → A0 + ∂0Λ = 0 (5.182)

→ e−ik·x(ε0 − iλK0) = 0 (5.183)

→ λ =
ε0
iK0

. (5.184)
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So, if we pick

Λ =
ε

iK0
e−ik·x (5.185)

then A0 = 0 implies

∂νAν = ∂0A0 + ~∇ · ~A = ~∇ · ~A = 0. (5.186)

So, it turns out that we can simply complete gauge fixing by setting two addi-
tional constraints on Aµ: {

A0 = 0
~∇ · ~A = 0,

(5.187)

i.e., we require that the vector potential Aµ be divergence-free and to have a
vanishing auxiliary mode. With this, we can the degree of freedom of Aµ from 4
from 2, making it a physical description. We shall show that can be done now.
If we revisit the polarization vector

εµ = (ε0, ε1, ε2, ε3) (5.188)

and require that A0 = 0, then obviously ε0 = 0. But since we also require
~∇ · ~A = 0, we have

~∇ · ~A = ∂jA
j (5.189)

= ∂j
(
εje−ik·x

)
(5.190)

∝ Aj(−iKj) (5.191)

= 0. (5.192)

So, ~k · ~A = 0, i.e., they are orthogonal vectors. Now, consider a photon traveling
in the z-direction. Because Kµk

µ = 0, we have

Kµ = (K, 0, 0,K). (5.193)

Because ~k · ~A ∝ ~k · ~ε, it follows that Kε3 = 0, i.e., there is no longitudinal
component in the polarization vector. Therefore,

εµ = (0, ε1, ε2, 0). (5.194)

So, the vector potential Aµ has the form

Aµ = εµe
−ik·x =


0
ε1
ε2
0

 e−ik·x. (5.195)
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We can construct the independent modes of propagation as{
ε
(1)
µ = (0, 1, 0, 0)>

ε
(2)
µ = (0, 0, 1, 0)>,

(5.196)

which give two physical transverse modes of the vector potential{
A

(1)
µ = (0, 1, 0, 0)>e−ik·x = ε

(1)
µ e−ik·x

A
(2)
µ = (0, 0, 1, 0)>e−ik·x = ε

(2)
µ e−ik·x,

(5.197)

All is good, but we might wonder why photons are massless. The answer
depends on who we ask, but mathematically, it is the gauge symmetry require-
ment that “makes” photons massless. Suppose that the Lagrangian is of the
form

L = −1

4
FµνF

µν +
1

2
m2AµA

µ, (5.198)

which suggests that the field is massive (hence the mass term m). Under gauge
transformation,

Aµ → Aµ + ∂µΛ, (5.199)

we have {
Fµν → Fµν

AµA
µ = (Aµ + ∂µΛ)(Aµ + ∂µΛ) 6→ AµA

µ
(5.200)

So, the Lagrangian is no longer gauge-invariant. Therefore we claim that mas-
sive fields do not have gauge symmetry, i.e., we cannot have the mass term if
we require mass invariance:

Massless field ⇐⇒ Gauge invariance. (5.201)

This also hints to us that mass comes from some mechanism that breaks gauge
symmetry, which we will explore later on.
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Part 6

Symmetries and
Conservation Laws in Field
Theory

6.1 Hamiltonian formalism (primer)

6.2 Overview of Noether’s Theorem: A Conse-
quence of Variational Principle

So far, we have seen quite a lot of miraculous coincidences, such as the fact that
the Lagrangian somehow gives the Klein-Gordon equation and so on. We have
also made a leap of faith from our traditional point-like description of particles
xµ to field-like descriptions φ and somehow the physics hasn’t changed, i.e. we
recognize that if the action is unchanged by a re-parameterization of xµ and φ,
then there exist one or more conserved quantities. This is the idea of Noether’s
theorem. In this subsection we will get an overview of Noether’s theorem and
apply it to illustrate conservation rules.

Let us go back and redefine the Lagrangian such that it also depends on xµ

- so that we take into account the interaction of φ with the space xµ:

L = L(φ, ∂µφ, x
µ). (6.1)

Next, recall our earlier definition of the variation:

φ′(x) = φ(x) + δφ(x). (6.2)

This definition merely compares φ′ and φ at the same location in spacetime. To

51
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get the full, total variation, we define:

∆φ = φ′(x′)− φ(x) (6.3)

= [φ′(x′)− φ(x′)] + [φ(x′)− φ(x)] (6.4)

≈ δφ+ (∂µφ)δxµ. (6.5)

So, the variation is now

δS =

ˆ
L(φ′, ∂µφ

′, x′µ) d4x′ −
ˆ
L(φ, ∂µφ, x

µ) d4x (6.6)

=

ˆ
L(φ′, ∂µφ

′, x′µ)J

(
x′

x

)
d4x−

ˆ
L(φ, ∂µφ, x

µ) d4x, (6.7)

where J(x′/x) denotes the Jacobian - or the scaling factor:

J

(
x′

x

)
= det

(
∂x′µ

∂xλ

)
= det

(
∂(xµ + δxµ)

∂xλ

)
. (6.8)

So, the variation becomes

δS =

ˆ
δL+ L∂µ(δxµ) d4x (6.9)

where

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) +

∂L
∂xµ

δxµ. (6.10)

Now, because δ(∂µφ) = ∂µ(δφ), the action variation becomes

δS =

ˆ [
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) +

∂L
∂xµ

δxµ + L∂µ(δxµ)

]
d4x (6.11)

=

ˆ [
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) +

(
∂L
∂xµ

δxµ + L∂µ(δxµ)

)]
d4x (6.12)

=

ˆ [
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) + ∂µ(Lδxµ)

]
d4x. (6.13)

Next, let us rewrite the second term in terms of the reverse-product rule:

∂L
∂(∂µφ)

∂µ(δφ) = ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ. (6.14)

Assume that we are integrating over some region R in spacetime, the action
variation becomes

δS =

ˆ
R

[
∂L
∂φ

δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ+ ∂µ(Lδxµ)

]
d4x

(6.15)

=

ˆ
R

{
δφ

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
+ ∂µ

[(
∂L

∂(∂µφ)
δφ

)
+ (Lδxµ)

]}
d4x.

(6.16)
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Gauss’ theorem says that integration over a divergence (recall that ∂µ denotes
divergence) of a field over a region is equal to the integration of that field over
the boundary of that region, so

δS =

ˆ
R

δφ

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
d4x+

ˆ
∂R

[
∂L

∂(∂µφ)
δφ+ Lδxµ

]
dσµ.

(6.17)

At this point, there are two routes to take. (1) If we restrict the variation to
zero at the boundaries, we will end up with the Euler-Lagrange equations, which
comes from setting the integrand of the first integral to zero:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (6.18)

(2) The other route we can take is not requiring the variation to be zero at the
boundary. Doing a small “add and subtract” trick to the second integrand:

∂L
∂(∂µφ)

δφ+ Lδxµ =
∂L

∂(∂µφ)
[δφ+ (∂νφ)δxν ] + Lδxµ − ∂L

∂(∂µφ)
∂νφδx

ν (6.19)

=
∂L

∂(∂µφ)
[δφ+ (∂νφ)δxν ]−

[
∂L

∂(∂µφ)
∂νφ− Lδµν

]
δxν .

(6.20)

Recall that the total variation is defined as

∆φ ≈ δφ+ (∂µφ)δxµ. (6.21)

We define the second bracketed term as the energy-momentum tensor (we will
justify this later):

θµν =
∂L

∂(∂µφ)
∂νφ− Lδµν . (6.22)

So, once again, the action variation becomes:

δS =

ˆ
R

δφ

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
d4x+

ˆ
∂R

[
∂L

∂(∂µφ)
∆φ− θµν δxν

]
dσµ.

(6.23)

Let the infinitesimal transformations be

∆φ = Φνδω
ν (6.24)

∆xµ = Xµ
ν δω

ν ≈ δxµ, (6.25)

where Φµν is a matrix and Φν is just a row vector. By requiring that δS = 0 and
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requiring that the Euler-Lagrange equation hold true, we getˆ
∂R

[
∂L

∂(∂µφ)
∆φ− θµν δxν

]
dσµ = 0 (6.26)

ˆ
∂R

[
∂L

∂(∂µφ)
Φνδω

ν − θµνXν
µδω

ν

]
dσµ = 0 (6.27)

ˆ
∂R

[
∂L

∂(∂µφ)
Φν − θµνXν

µ

]
δων dσµ = 0. (6.28)

Let us define

Jµν =
∂L

∂(∂µφ)
Φν − θµνXν

µ . (6.29)

Now, because ˆ
∂R

Jµν δω
ν dσµ = 0 (6.30)

must hold for any arbitrary δων , we requireˆ
∂R

Jµν dσµ = 0. (6.31)

Now, recall Gauss’ theorem one more time:ˆ
∂R

Jµν dσµ =

ˆ
R

∂µJ
µ
ν d

4x. (6.32)

This means Jµν is divergence-free, i.e. Jµν is a conserved quantity:

∂µJ
µ
ν = 0. (6.33)

We can think of Jµν as current, whose existence is invariant under the given
transformations. We can also calculate another conversed quantity called the
“charge”

Qν =

ˆ
σ

Jµν dσµ. (6.34)

Let’s look at µ = 0, i.e. assuming t is constant:

Qν =

ˆ
V

J0
ν d

3x. (6.35)

Now, revisit Gauss’ theorem:ˆ
V

∂0J
0
ν d

3x+

ˆ
V

∂iJ
i
ν d

3x = 0 (6.36)

ˆ
V

∂0J
0
ν d

3x+ 0 = 0 (6.37)

d

dt

ˆ
V

J0
ν d

3x =
dQν
dt

= 0. (6.38)
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So charge is conserved over time. This is the essence of Noether’s theorem.

Finally, let us justify the definition of θµν as the energy-momentum tensor.
We require that the laws of physics remain the same translationally, and the
same in all time. So, let see what we get if we make the transformations

Xµ
ν = δµν (6.39)

Φµ = 0. (6.40)

Now recall the definition of Jµν , then apply the transformations to the definition:

Jµν =
∂L

∂(∂µφ)
Φν − θµνXν

µ (6.41)

= −θµν δνµ (6.42)

= −θµν . (6.43)

And so the conservation law, by taking µ = 0, is

d

dt

ˆ
θ0
ν d

3x =
d

dt
Pν = 0. (6.44)

Let us calculate the first component P0 from the definition of θµν , to show (partly)
that Pν is the 4-momentum:

P0 =

ˆ
θ0

0 d
3x =

ˆ {
∂L

∂(∂0φ)
− L

}
d3x (6.45)

=

ˆ {
∂L
∂φ̇

φ̇− L
}
d3x. (6.46)

The right-hand side the energy of the field. Next, we can showˆ
θ0
i d

3x (6.47)

is the momentum from the fact that ∂φ/φxµ is a 4-vector under Lorentz trans-
formations.

Now, if we had assumed that the Lagrangian hadn’t involved xµ, then we
would have ended at the Euler-Lagrange equation, i.e. the system does not
exchange energy and momentum with the outside. We condense that with the
following proposition:

Proposition 6.2.1. Conservation of energy and momentum holds for a system
whose Lagrangian does not depend of xµ.

Now, let us look at the relationship between the energy-momentum tensor
θµν and the xµ-independent Lagrangian, which can be given by

L =
1

2
gµν(∂µφ)(∂νφ)− m2

2
φ2. (6.48)
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So θµν can be written as (some of the derivations can be found in the previous
subsection):

θµν = gλνθµλ (6.49)

= gλν
(

∂L
∂(∂µφ)

∂λφ− δµλL
)

(6.50)

= gλν(gµλ(∂λφ)− δµλL) (6.51)

= gλν(∂µφ∂λφ− δµλL) (6.52)

= (∂νφ)(∂µφ)− gµνL. (6.53)

We observe that µ and ν are exchangeable, hence θµν is symmetric. So, for a
scalar field φ whose Lagrangian does not exchange energy and momentum with
the external, then the energy-momentum tensor θµν is symmetric. However,
in general θµν is not symmetric, in general, by definition. But, we can define
the canonical energy-momentum tensor as

Tµν = θµν + ∂λf
λµν (6.54)

such that ∂µT
µν = 0 and Tµν is symmetric. We will not go into detail about

this, but the idea is similar to the three-dimensional case in vector calculus
where the curl of a vector field is the same as the curl of that same vector field
added to a gradient of some other scalar field. By adding the f term, what we
wish to accomplish is have T be both divergence-free and symmetric. Now, why
do we want the energy-momentum tensor to be symmetric? One of the reasons
for this is that in general relativity, Einstein’s field equation requires that the
energy-momentum stress tensor be symmetric, because the Ricci tensor Rµν
and the metric tensor gµν are both symmetric.

6.3 Noether’s Theorem on Symmetries and Con-
servation Laws

Informally, Noether’s theorem states that every differentiable symmetry of the
action of a physical system has a corresponding conservation law. In this sub-
section we will look at slightly different derivation of Noether’s (first) theorem.

Consider a general action:

S =

ˆ
Ω

dx L
(
φA(x), ∂µφ

A(x)
)
. (6.55)

Next, consider infinitesimal spacetime and a transformation:

Xµ → X
′µ = Xµ + δXµ

φA(x)→ φ
′A(x′) = φ

′A(x) + δφA(x). (6.56)
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Then

δS =

ˆ
Ω′
d4x′ L

(
φ
′A(x′), ∂′µφ

′A(x′)
)
−
ˆ

Ω

d4xL
(
φA(x), ∂µφ

A(x)
)
. (6.57)

Now we re-label x′ → x, since it is just a dummy variable in the integral:

δS =

ˆ
Ω′
d4xL

(
φ
′A(x), ∂′µφ

′A(x)
)
−
ˆ

Ω

d4xL
(
φA(x), ∂µφ

A(x)
)

=

ˆ
Ω

d4x
[
L
(
φ
′A(x), ∂′µφ

′A(x)
)
− L

(
φA(x), ∂µφ

A(x)
)]

+

ˆ
Ω′−Ω

d4xL
(
φ
′A(x), ∂µφ

′A(x)
)
. (6.58)

Note that ˆ
Ω′−Ω

d4x =

ˆ
δΩ

dSλ δX
λ. (6.59)

So,
ˆ

Ω′−Ω

d4xL
(
φ
′A(x), ∂µφ

′A(x)
)

=

ˆ
δΩ

dSλ δX
λL
(
φ
′A, ∂µφ

′A
)
, (6.60)

where to leading order terms:

δXλL
(
φ
′A, ∂µφ

′A
)

= δXλL
(
φA, ∂µφ

A
)
. (6.61)

By Gauss’ law,
ˆ
δΩ

dSλ δX
λL
(
φA, ∂µφ

A
)

=

ˆ
Ω

d4x ∂λ
[
δXλL

(
φA, ∂µφ

A
)]
, (6.62)

where ∂µ denotes the divergence.

So we have, for the last term of δS,
ˆ

Ω′−Ω

d4xL
(
φ
′A(x), ∂µφ

′A(x)
)

=

ˆ
Ω

d4x ∂µ [δXµL] (6.63)

Next, to simplify the L′ − L term, we define:

δ̄f(x) = f ′(x)− f(x)

= [f ′(x′)− f(x)]− [f ′(x′)− f ′(x)]

= δf(x)− ∂µf(x)δXµ, (6.64)

where f ′ denotes a “new” f rather than the derivative of f and

δf(x) = f ′(x′)− f(x) (6.65)
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and

f ′(x′) = f ′(x+ δx)

= f ′(x) + δXµ∂µf
′(x)

≈ f ′(x) + δXµ∂µf(x). (6.66)

Then we have

L
(
φ
′A, ∂′µφ

′A(x)
)
− L

(
φA(x), ∂µφ

A(x)
)

= L
(
φA(x) + δ̄φA(x), ∂µφ

A + δ̄∂µφ
A
)
− L

(
φA(x), ∂µφ

A(x)
)
. (6.67)

Since δ̄ and ∂µ commute, we have

L
(
φ
′A, ∂′µφ

′A(x)
)
− L

(
φA(x), ∂µφ

A(x)
)

= L
(
φA(x) + δ̄φA(x), ∂µφ

A + ∂µδ̄φ
A
)
− L

(
φA(x), ∂µφ

A(x)
)

≈ L
(
φA, ∂µφ

A
)

+
∂L
∂φA

δ̄φA +
∂L

∂(∂µφA)
∂µ(δ̄φA)− L

(
φA, ∂µφ

A
)

=

(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA +

(
∂µ

∂L
∂(∂µφA)

δ̄φA +
∂L

∂(∂µφA)
∂µφ

A

)
=

(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA + ∂µ

(
∂L

∂(∂µφA)
δ̄φA

)
, (6.68)

where the last equality comes from doing reverse product rule.

Putting everything together,

δS =

ˆ
Ω

d4x

[(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA + ∂µ

(
∂L

∂(∂µφA)
δ̄φA

)
+ ∂µ (δXµL)

]
=

ˆ
Ω

d4x

(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA +

ˆ
Ω

d4x ∂µ

[
∂L

∂(∂µφA)
δ̄φA + LδXµ

]
.

(6.69)

Now, use δ̄φA ≡ δφA − ∂µφAδXµ, then

∂µ

[
∂L

∂(∂µφA)
δ̄φA + LδXµ

]
= ∂µ

[
∂L

∂(∂µφA)
δφA − ∂L

∂(∂µφA)
(∂νφ

A)(δXν) + LδXµ

]
= ∂µ

(
∂L

∂(∂µφA)
δφA

)
− ∂µ

[(
∂L

∂(∂µφA)
∂νφA − ηµνL

)
δXν

]
. (6.70)

Let us call

Tµν =
∂L

∂(∂µφA)
∂νφA − ηµνL (6.71)
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the energy-momentum stress tensor. Then the variation in the action
becomes

δS =

ˆ
Ω

d4x

(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA +

ˆ
Ω

d4x ∂µ

(
∂L

∂(∂µφA)
δφA − TµνδXν

)
.

(6.72)

Let us define the 4-current

Jµ =
∂L

∂(∂µφA)
δφA − TµνδXν (6.73)

Then we get

δS =

ˆ
Ω

d4x

(
∂L
∂φA

− ∂µ
∂L

∂(∂µφA)

)
δ̄φA +

ˆ
Ω

d4x ∂µJ
µ (6.74)

where ∂µJ
µ is the divergence of J .

If we require the action be invariant under transformations such as

φA → φA + δφA (6.75)

and/or

Xµ → Xµ + δXµ (6.76)

then δS = 0. And if φA is on shell and obeys the equations of motion, then
the integrand in the first term of the action is also zero (this is just the Euler-
Lagrange equation)

∂L
∂φA

− ∂µ
∂L

∂(∂µφA)
= 0. (6.77)

These together give a conserved current, i.e. the four-current is divergence free:

∂µJ
µ = 0 (6.78)

This is a major stepping stone towards the result of Noether’s first theorem:

Theorem 6.3.1. When a theory has a symmetry and the equations of motion
hold, there exists a conserved quantity.

So what is this conserved quantity in the theory we are working with? Con-
sider ∂µJ

µ = 0, then ˆ
d3x ∂µJ

µ = 0

ˆ
d3x

(
∂0J

0 + ∂jJ
j
)

= 0

d

dt

ˆ
d3xJ0 +

ˆ
d3x ∂jJ

j = 0

d

dt

ˆ
d3xJ0 +

ˆ
d3x∇ · ~J = 0. (6.79)
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Let Jµ = (ρ, ~J), where ρ is the charge density, then

d

dt

ˆ
d3x ρ+

ˆ
d3x∇ · ~J = 0

dQ

dt
+

ˆ
S

d ~A · ~J = 0, (6.80)

where we have used Gauss’ law on the second term. Now, since we want ~J → ~0
on the boundary for the field to be physical, the second term on the left hand
side is just going to be zero. This implies that

dQ

dt
= 0 (6.81)

We have the conservation of charge.

In the following subsubsection, we shall consider a few illuminating examples
to see how for every symmetry, we can obtain a conserved quantity, as Noether’s
theorem says.

6.3.1 Space-time translations

The action constructed from relativistic fields is invariant under Lorentz trans-
formations as well as translations of the coordinates. Consider the translation
transformation:

xµ → xµ + aµ, (6.82)

where aµ is constant. Since the fields don’t change at any point, we require that

δφA = 0. (6.83)

Since we have shown

∂µJ
µ = 0 (6.84)

has to hold, the definition

Jµ =
∂L

∂∂(∂µφA)
δφA − Tµνδxν (6.85)

gives

∂µT
µν = 0. (6.86)

This gives

P ν =
d

dt

ˆ
d3xT 0ν =

ˆ
d3x ∂0T

0ν = −
ˆ
d3x ∂iT

iν = 0, (6.87)
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i.e., we get a conservation law since we require T iν to vanish at x→∞:

Pµ =

ˆ
d3xT 0µ (6.88)

which is nothing but the conservation of the 4-momentum of the field.

6.3.2 Lorentz transformations

Consider the infinitesimal Lorentz transformations:

x
′µ = xµ + ωµνxν , (6.89)

where ωµν is independent of xµ. To keep xµxµ invariant, we require that ωµν

antisymmetric, i.e.,

ωµν = −ωνµ. (6.90)

To express the field variation δφA under this infinitesimal transformation, we
have to use the spin matrix:

Σλρ, (6.91)

defined as

INSERT DEFINITION HERE. (6.92)

THIS PART IS MISSING...

6.3.3 Internal symmetries

Internal symmetries are those which relate different fields at the same space-time
point. EXPLAIN MORE In this case, δxµ = 0. Consider th infinitesimal
transformation

φA(x)→ φA + fAτ (x)δετ , r = 1, 2, . . . , p, (6.93)

under which the action is invariant, where deltaετ are infinitesimal parameters
independent of space-time, and fAτ (x) are specified functions of the fields φA and
their derivatives. The index τ is not summed over, but rather it indicates the
type of symmetry. There maybe several independent symmetries in a system.
We can treat them separately by defining the conserved current for the rth

symmetry as

Jµr =
∂L

∂(∂µφA)

δφA

δεr
. (6.94)

I STILL DON’T FULLY UNDERSTAND THESE CONCEPTS...
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Part 7

Spontaneous Symmetry
Breaking

7.1 Introduction

Spontaneous symmetry breaking is a mechanism where symmetry still holds
dynamically but the solutions break symmetry. In other words, spontaneous
symmetry breaking is a process in which a physical system in a symmetric state
ends up in an asymmetric state. In particular, it can describe systems where the
equations of motion or the Lagrangian obey symmetries, but the lowest-energy
vacuum solutions do not exhibit that same symmetry. When the system goes to
one of those vacuum solutions, the symmetry is broken for perturbations around
that vacuum even though the entire Lagrangian retains that symmetry.

Consider the Lagrangian of a real scalar field φ:

L =
1

2
(∂µφ)(∂µφ)− V (φ). (7.1)

Suppose that the potential V (φ) is invariant under party transformations, i.e.,

V (φ) = V (−φ), (7.2)

Then by inspection the Lagrangian is also invariant under parity transforma-
tions:

L′ =
1

2
(−∂µφ)(−∂µφ)− V (−φ) (7.3)

=
1

2
(∂µφ)(∂µφ)− V (φ) (7.4)

= L. (7.5)

63
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So symmetry is still preserved. We can consider such a potential V (φ) such that
V (φ) = V (−φ):

V (φ) =
1

2
m2φ2 +

1

4
λφ4 (7.6)

where m2 > 0, λ > 0. If we plot V (φ) versus φ, we see that there is a unique
minimum at φ = 0.

Figure 7.1: Plot of potential V (φ · φ) with m2 > 0. We notice a unique global
minimum.

The ground state, or the state of lowest energy, in field theory is called the
vacuum expectation value, denoted 〈φ〉. In our example the state of lowest
energy has zero energy, so

〈φ〉 = 0. (7.7)

Now, we look at whether at φ = 0 there is still symmetry. To do this, we
once again use variational methods, i.e., we look at small excitations around the
vacuum:

φ = 〈φ〉+ ε = 0 + ε = ε. (7.8)

In which case, the Lagrangian becomes

L =
1

2
(∂µε)(∂

µε) +
1

2
m2ε2 + . . . (7.9)
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where the higher order terms are neglected because we’re only concerned with
infinitesimal variations. Now, by the look of the Lagrangian, we know that the
theory is describing a massive particle in real scalar field. So, we have reasons
to suspect that excitations in a field gives rise to a particle. We will explore this
idea much more deeply as we move on.

Now, let us suppose that

V (φ) = −1

2
m2φ2 +

1

4
λφ4 (7.10)

then the plot of V (φ) versus φ becomes Figure 7.2.

Figure 7.2: Plot of potential V (φ·φ) with m2 < 0. We notice two global minima.

We observe that there are two possible vacuum solutions. So, we might
wonder, well, which one is the vacuum solution? While either one can be a
solution, nature spontaneously picks one. Let us look at what which φ’s does
V (φ) obtain minimal values:

dV

dφ
= m2φ+ λφ3 = 0, (7.11)

i.e.,

〈φ〉 = ±
√
−m2

λ
. (7.12)
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Now suppose that nature picks the positive φ:

〈φ〉 =

√
−m2

λ
≡ V. (7.13)

Now, we can shift to a field defined with respect to the vacuum expectation
value:

φ′ = φ− 〈φ〉 = φ− V. (7.14)

Then

〈φ′〉 = 0. (7.15)

In terms of the Lagrangian, the new Lagrangian is

L =
1

2
(∂µφ

′)(∂µφ′)− (−m2)

[
φ′4

4V2
+
φ′3

V
+ φ′2 − V

2

4

]
, (7.16)

which has no symmetry in terms of φ′ (parity transformation). We say that the
symmetry is hidden, since we always shift back to get symmetry.

Now, we can look at small excitations about 〈φ′〉:

φ′ = 〈φ′〉+ ε = 0 + ε = ε. (7.17)

Plugging into the Lagrangian, we get

L =
1

2
(∂µε)(∂

µε)− 1

2
(−2m2)ε2, (7.18)

which acts as a massive particle scalar field with mass (note that we are still
assuming −2m2 > 0). Again, we see that by breaking symmetry, we get a
massive particle. We shall verify this. Recall the Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − 1

4
λφ4. (7.19)

Assume that

〈φ〉 =

√
−m2

λ
= V. (7.20)

Now let

φ = 〈φ〉+ ε = V + ε, (7.21)

where V is a constant, this gives

∂µφ = ∂µε. (7.22)
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Putting everything together, the new V (φ) is

V =
1

2
m2(V + ε)2 +

1

4
λ(V + ε)2 (7.23)

=
1

2
m2(V2 + 2Vε+ ε2) +

1

4
λ(V4 + 4V3ε+ 6V2ε2 + 4Vε3 + ε4). (7.24)

Keeping the linear terms

V ≈ ε(m2 + V) + ε2
(

1

2
m2 +

3

2
λV2

)
+ . . . (7.25)

≈ εV(m2 + λV2) + ε2(−m2) (7.26)

≈ εV
(
m2 − λm

2

λ

)
+ ε2(−m2). (7.27)

So,

V (ε) ≈ −ε2m2 =
1

2
(−2m2)ε2. (7.28)

So the new Lagrangian is verified, as desired. We observe that V (ε) is symmet-
ric around 0.

We observe that under a parity transformation, we still get symmetry. We
call this discrete symmetry, to distinguish from continuous symmetry un-
der smooth/continuous transformation.

Theorem 7.1.1. Goldstone’s Theorem: In a theory with a continuous sym-
metry that is spontaneously broken, then there will be a massless particle, re-
ferred to as Nambu-Goldstone mode.

To illustrate the essence of this theorem, we consider two scalar fields written
as a vector

φ =

(
φ1

φ2

)
, (7.29)

with an associated Lagrangian defined as

L =
1

2
(∂µφ) · (∂µφ)− V (φ · φ). (7.30)

This theory has a global O(2) symmetry (continuous):

φ′ = Rφ (7.31)

where R is just a rotation matrix, by a (continuous) angle θ:

R =

(
cos θ − sin θ
sin θ cos θ

)
. (7.32)
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Under R, the dot product is invariant:

φ′> · φ′ = (Rφ)>(Rφ) = φ>R>Rφ = φ>φ. (7.33)

So it is clear that the Lagrangian is invariant, as expected:

L′ = L. (7.34)

Now, suppose that

V (φ · φ) =
1

2
m2φ · φ+

1

4
λ(φ · φ)2. (7.35)

If m2 > 0, then we can plot the potential V (φ): Again, we see that there is a

unique vacuum solution:

〈φ〉 =

(
0
0

)
. (7.36)
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But what if m2 < 0, we get a similar situation at last time, but now in three
dimensions where we also have a circle of possible ground state. Now, let nature
spontaneously picks a vacuum. We can pick

〈φ〉 =

(
V
0

)
. (7.37)

Again, let us look at an excitation about φ and shift:

φ′ = φ− 〈φ〉 =

(
φ1

φ2

)
−
(
V
0

)
=

(
φ1 − V
φ2

)
. (7.38)

For small excitations, we can approximate:

φ′ = 〈φ′〉+ ε = 〈φ′〉+

(
η
ξ

)
=

(
η
ξ

)
. (7.39)

Note that the shift makes 〈φ〉 = 0.

We can express the Lagrangian in terms of these, and find that

1. One field is massless, corresponding to the Nambu-Goldstone mode.

2. The other is massive, corresponding to the Higgs particle.

7.2 Continuous Global Symmetry

Consider two scalar fields φ1 and φ2, written as

φ =

(
φ1

φ2

)
. (7.40)

And consider the transformation φ′ → Rφ where R is a rotation of angle θ
where θ does not depend on x. We can look at the Lagrangian:

L =
1

2
∂µφ · ∂µφ− V (φ · φ). (7.41)

For m2 < 0, then

V (φ · φ) =
1

2
m2φ2 +

1

4
λφ2 (7.42)

has minimal value at

〈φ〉2 =
−m2

λ
≡ V2. (7.43)

Let’s pick

〈φ〉 =

(
V
0

)
(7.44)
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and do a shift

φ′ = φ− 〈φ〉 (7.45)

so that

〈φ′〉 =

(
0
0

)
. (7.46)

Let us consider excitations around the vacuum:

φ′ = 〈φ〉+

(
η
ζ

)
=

(
η
ζ

)
(7.47)

and (again) a shift

φ = 〈φ〉+ φ′ =

(
V + η
ζ

)
(7.48)

which gives

φ · φ = (V + η)2 + ζ2 (7.49)

and

∂µφ = ∂µφ
′ =

(
∂νη
∂µζ

)
. (7.50)

We can now write the Lagrangian in terms of the excitations, dropping cubic
and higher order terms. First, we find what the new potential looks like:

V (φ · φ) =
1

2
m2φ2 +

1

2
λφ4 (7.51)

=
1

2
m2
[
(V + η)2 + ζ2

]
+

1

4
λ
[
(V + η)2 + ζ2

]2
(7.52)

=
1

2
m2
[
V2 + 2Vη + η2 + ζ2

]
+

1

4
λ
[
V2 + 2Vη + η2 + ζ2

]2
(7.53)

=
1

2
m2
[
V2 + 2Vη + η2 + ζ2

]
+

1

4
λ
[
4V3η + 4V2η2 + 2V2ζ2 + 2V2η2 + . . .

]
(7.54)

= η

[
1

2
m22V +

1

4
λ4V3

]
+ η2

[
1

2
m2 +

3

2
λV2

]
+ ζ2

[
1

2
m2 +

λ

2
V2 + . . .

]
+ . . .

(7.55)

Recall that we have defined the minimum:

V2 = −m
2

λ
. (7.56)

This gives

V (φ2) = Vη(m2 + λV2) + η2

[
1

2
m2 − 3

2
m2

]
+

1

2
η2(m2 −m2). (7.57)
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To second order, this becomes

V (φ2) = −m2η2 =
1

2
(−2m2η2). (7.58)

So, the Lagrangian is

L =
1

2
∂µφ∂

µφ− V (φ · φ) (7.59)

=
1

2

(
∂µη ∂µζ

)(∂µη
∂µζ

)
−
[

1

2
(−2m2η2)

]
+ . . . (7.60)

=
1

2
[∂µη∂

µη + ∂µζ∂
µζ]− 1

2
(−2m2)η2 + . . . (7.61)

Notice that we started with two scalars φ =
(
φ1 φ2

)>
and the wrong sign

m2 < 0. But after spontaneous symmetry breaking and a physical vacuum
excitation, we have

L =
1

2
∂µη∂

µη − 1

2
(−2m2)η2 +

1

2
∂µζ∂

µζ (7.62)

Observe that we a get 1 massive scalar field η with mass −2m2 > 0 and a mass-
less scalar ζ. The massive scalar field is what we will ultimately describe as the
Higgs boson, while the massless field describes the Nambu-Goldstone mode.
Let us revisit the Goldstone theorem:

Theorem 7.2.1. Goldstone: For every continuous global symmetry that is
spontaneously broken, there emerges a massless particle.

For example, in electromagnetism, there is a U(1) local gauge symmetry. We
have shown earlier that this gives rise to the massless photon.

There are slight “exceptions” to the rule, though. Some issues might arise
when we try to describe the weak interaction. We would like to describe the
force-carrying particles in the weak interactions as a gauge theory. SU(2) gives
us 3 gauge fields. However, since the weak interaction is too weak and short-
ranged, it was suspected that the weak force is carried by 3 massive vector fields.
But, the problem is that, according to Goldstone’s theorem, we can’t have both
a gauge symmetry and massive terms for the gauge fields.

Remark 7.2.1. Any interacting massless particle is detectable because it’s got
a long-range interaction. This implies that particles in Nambu-Goldstone modes
are detectable.

7.3 An O(2) example

So far, we have looked at spontaneous symmetry breaking of of a global gauge
theory. Now, we will look at spontaneous symmetry breaking of a local gauge
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theory. This subsection is essentially about Higgs and others found a mecha-
nism where the massless Nambu-Goldstone modes get “eaten” and the gauge
fields acquire mass.

Consider a local O(2) transformation and consider (once again) 2 real scalar
fields φ1, φ2, written as a vector.

φ =

(
φ1

φ2

)
. (7.63)

The transformation is essentially a rotation, we shall call R. For the sake of
simplicity, we can take R as a 2×2 matrix. So, the transformation has the form:

φ′ = R(x)φ =

(
cosα(x) − sinα(x)
sinα(x) cosα(x)

)(
φ1

φ2

)
, (7.64)

where the angle of rotation α depends on the coordinates (hence local). Also
note that since the determinant of R is 1, this transformation can also be clas-
sified as a special orthogonal transformation, belonging to SO(2), an abelian
group.

To greatly simplify our notation, we can write the transformation φ→ φ′ as

R = eiα(x)T (7.65)

where T is a 2×2 generator. For this particular transformation, T is Hermitian

T =

(
0 i
−i 0

)
. (7.66)

It might be useful later to observe that

T 2 = T (7.67)

T> = −T (7.68)

T † = T. (7.69)

For small α(x), the transformation reduces into a much simpler form:

R ≈ I + iα(x)T (7.70)

=

(
1 0
0 1

)
+ iα(x)

(
0 i
−i 0

)
=

(
1− α
α1

)
. (7.71)

Let us return to our original Lagrangian:

L =
1

2
∂µφ · ∂µφ− V (φ · φ). (7.72)

Let φ→ φ′ = R(x)φ, we get

∂µφ = ∂µφ
′ = R∂µφ+ (∂µR)φ. (7.73)
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Notice that there is no local symmetry here, which means we ought to fix this
by changing the derivative (as before), i.e., we need to define a gauge-covariant
derivative:

Dµ = ∂µ + igAµ (7.74)

where g is a coupling constant and Aµ TAµ is some (matrix) function (note
that we are still working with matrices here). Formally, in order for Dµ to act
on φ, it has to be a 2×2 matrix. So formally,

Dµ = I∂µ + TigAµ (7.75)

where I is the identity matrix, and T is the generator. Now, to obtain gauge
invariance, we want Dµφ→ D′µφ

′ = RDµφ so that

Dµφ ·Dµφ→ (RDµφ)
>

(RDµφ) = (Dµφ)>R>R(Dµφ) (7.76)

= (Dµφ)>(Dµφ) (7.77)

= (Dµφ) · (Dµφ). (7.78)

The question is: how must Aµ transform in order for this to hold? Recall what
we have done in the previous sections when we required that Aµ transforms as

A′µ = Aµ + ∂µΛ (7.79)

in order to get gauge invariance in electromagnetism. To find how Aµ has to
transform here, we follow sort of a similar path, while keeping in mind that Aµ
is actually a matrix. To do this, we first look at

D′µφ
′ = (∂µ + iqA′µ)Rφ (7.80)

= R∂µφ+ (∂µR)φ+ iqA′µRφ. (7.81)

Since we require invariance, we set

D′µφ
′ = RDµφ, (7.82)

i.e., we set

R∂µφ+ (∂µR)φ+ iqA′µRφ = R(∂µiqAµ)φ (7.83)

which says

R∂µφ+ (∂µR)φ+ iqA′µRφ = R∂µφRiqAµφ, (7.84)

which is satisfied if

igA′µRφ = igRAµ − (∂µR)φ. (7.85)
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So,

ig

ig
A′µR = RAµ −

1

ig
∂µR (7.86)

A′µRR
−1 = RAµR

−1 +
i

g
(∂µR)R−1. (7.87)

But since R−1R = RR−1 = 1,

A′µ = RAµR
−1 +

i

g
(∂µR)R−1 (7.88)

This is the transformation rule for Aµ under a local O(2) gauge transformation.

Let us consider a quick educated example. With

R = eiα(x)T (7.89)

R−1 = e−iα(x)T , (7.90)

we get

Aµ → A′µ = RAµR
−1 +

i

g
(∂µR)R−1 (7.91)

= eiα(x)TAµe
−iα(x)T +

i

g
(i(∂µα)TR)R−1. (7.92)

Recall that Aµ is a matrix. So, actually Aµ is written as

Aµ ≡ AµT. (7.93)

So, we actually have

A′µT = AµTe
iα(x)T e−iα(x)T − 1

g
(∂µα(x))T. (7.94)

So, the function Aµ must obey

A′µ = Aµ −
1

g
(∂µα). (7.95)

Looks familiar? You’re right, because we have seen this before in studying the
Maxwell’s equations. If we define

Λ(x) = −α(x)

g
(7.96)

then we get the familiar transformation rule for Aµ:

A′µ = Aµ + ∂µλ(x). (7.97)
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Note that, as a bonus we also get

Fµν = ∂µAν − ∂νAµ, (7.98)

which implies an anti-symmetry in the electromagnetic field strength tensor

Fµν = −Fνµ, (7.99)

which carries a gauge invariance. Now that we know the transformation rule
for Aµ and have defined Fµν in such a way that it is gauge invariant, we can
add it to the Lagrangian to make the theory (local O(2) gauge theory, that is)
dynamical. The complete Lagrangian for this theory is then

L =
1

2
(Dµφ) · (Dµφ)− V (φ · φ)− 1

4
FµνFµν . (7.100)

But note that this is only true for the simple case of a O(2) transformation.
To find how Aµ transforms in general, we have to use the general, boxed equation
that involves R and R−1.

7.4 Introduction to the Higgs Mechanism

To summarize what we have been doing so far, consider (once again) the poten-
tial

V (φ · φ) =
1

2
m2φ2 +

1

4
λ(φ · φ)2. (7.101)

If m2 > 0, then there is spontaneous symmetry breaking, i.e. we get massless
Aµ with 2 modes of motion (we have shown this in the worked problems) and
2 massive scalar fields φ1 and φ2, i.e., two Nambu-Goldston modes and two
massive modes.

On the other hand, if m2 < 0, we get spontaneous symmetry breaking, and
Goldstone theorem says that for a global symmetry, we get one massive Higgs
scalar and one massless Nambu-Goldstone mode, totaling two rather than 4.
(Note that this is not true for local symmetry)

Motivated by our recent example, now we will show how spontaneous symme-
try breaking in O(2) can give rise to the Higgs mechanism. We will show that
in this symmetry breaking process, the Nambu-Goldstone mode gets “eaten”
(this is actually a technical term) and Aµ → A′µ, which is massive. Ultimately,
we will show that we are left with a massive A′µ with three modes and a mas-
sive Higgs scalar without any Nambu-Goldstone modes, totaling (once again) 4
modes.

Recall the Lagrangian of the form

L =
1

2
(Dµφ) · (Dµφ)− V (φ · φ)− 1

4
FµνFµν . (7.102)
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with

φ =

(
φ1

φ2

)
(7.103)

and

Dµφ = (∂µI− igTAµ). (7.104)

We recall that this has an O(2) invariance with{
φ→ φ′ = Rφ

Aµ → A µ = RAµR
−1 + i

g (∂µR)R−1.
(7.105)

To see how the Higgs mechanism comes about, we shall consider an illustrating
example in O(2) with a re-parameterization of φ. We shall write

φ = R−1φ = R−1

(
0

V + E

)
(7.106)

and let

α =
ζ

V
, (7.107)

where these terms are defined in the previous subsection. With this, we get

R−1 = e−iαT ≈
(

1 α
−α 1

)
=

(
1 ζ/V
−ζ/V 1

)
. (7.108)

This gives us a new expression for φ:

φ = R−1φ′ =

(
1 ζ/V
−ζ/V 1

)(
0

V + E

)
≈
(

ζ
V + E

)
. (7.109)

This is in fact the expression we obtained earlier in the previous subsection,
where E denotes a small excitation. This re-parameterization is called the “Uni-
tary Gauge.”

Now, let us put this new φ into the Lagrangian:

L =
1

2
Dµ(R−1φ′) ·Dµ(R−1φ′)− V (R−1φ′ ·R−1φ′)− 1

4
FµνF

µν . (7.110)

Since this is gauge invariant, we can perform a gauge transformation:{
φ→ Rφ = R ◦R−1φ′ = φ′

Aµ → A′µ,
(7.111)
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which gives

L =
1

2
D′µφ

′ ·D
′µφ′ − V (φ′ · φ′)− 1

4
F ′µνF

′µν . (7.112)

Now, we note that

φ′ · φ′ = (V + E)2, (7.113)

so, keeping only the quadratic terms

V (φ′ · φ′) =
1

2
m2(V + E)2 +

1

4
λ(V + E)4 (7.114)

= E(m2V + λV3) + E2

(
1

2
m2 +

3

2
λV2 + . . .

)
. (7.115)

But because

V2 =
−m2

λ
, (7.116)

V (φ′ · φ′) simplifies to

V (φ′ · φ′) ≈ E(−λV3 + λV3) + E2

(
1

2
m2 − 3

2
m2 + . . .

)
(7.117)

≈ −E2m2 (7.118)

=
1

2
(−2m2)E2. (7.119)

We also need to look at how Dµ changes:

D′µ = (I∂µ + igTA′µ) (7.120)

=

(
∂µ 0
0 ∂µ

)
+ ig

(
0 i
−i 0

)
A′µ (7.121)

=

(
∂µ −igA′µ
igA′µ ∂µ

)
. (7.122)

So,

D′µφ
′ =

(
∂µ −igA′µ
igA′µ ∂µ

)(
0

V + E

)
(7.123)

=

(
−gA′µ(V + E)

∂µE

)
. (7.124)

Therefore,

D′µφ
′ ·D

′µφ′ =

(
−gA′µ(V + E)

∂µE

)>(−gA′µ(V + E)
∂µE

)
(7.125)

= g2A′µA
′µ(V + E)2 + ∂µE∂µE . (7.126)
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Thus the Lagrangian becomes:

L =
1

2
∂µ∂

µ − 1

2
(−2m2)E2 − 1

4
F ′µνF

′µν (7.127)

+
g2V2

2
A′µA

′µ +
g2

2
(2EV + E2)A′µA

′µ + . . . (7.128)

What does this theory describe? We shall break this down term-by-term:

1. The two terms:

1

2
∂µ∂

µ − 1

2
(−2m2)E2 (7.129)

which has −m2 > 0 describe a massive scalar, spin 0 particle. This parti-
cle is called the Higgs boson.

2. The next two terms:

−1

4
F ′µνF

′µν +
g2V2

2
A′µA

′µ (7.130)

describe a massive vector gauge field (recall what we have derived in the
electromagnetism section)

3. And the last (significant) term:

g2

2
(2EV + E2)A′µA

′µ (7.131)

is the interaction between E and A′µ.

Now, notice that we do not have a massless Nambu-Goldstone mode (the
ζ term is long gone). We say that this mode has got “eaten”, resulting in Aµ
becoming a massive A′µ. We can also count the degrees of freedom again to
see what have changed. Recall that before spontaneous symmetry breaking,
we have 2 modes for the massless vector field Aµ (the photon) and 2 massive

modes for φ =
(
φ1 φ2

)>
. So we had 4 in total. After spontaneous symmetry

breaking, we have 1 degree of freedom for the massive scalar field E , and 3 for
the massive gauge field A′µ (we will show why there are 3 degrees of freedom in
the Worked Problems section). So, we also end up with 4 degrees of freedom,
except without a massless mode.

Note that since O(2) is U(1) are very similar, we will not work out the details
of spontaneous symmetry breaking of U(1) gauge theory here. This will serve
as an exercise that will be covered in its entirety (theory derived from scratch)
in the Worked Problems section.



Part 8

Gravitation and Lagrangian
Formulation of General
Relativity

8.1 Review of General Relativity & Curved Space-
time

8.1.1 General Relativity

Taking the speed of light, c, to be 1, the Einstein equation for general relativity
is

Rµν −
1

2
Rgµν = 8πGTµν . (8.1)

Sometimes, it is more useful to write the Einstein’s equation as

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (8.2)

In vacuum, where all components of the energy-momentum stress tensor are
zero, the Einstein’s equation becomes

Rµν = 0. (8.3)

8.1.2 Curved Spacetime

Perhaps the most important change as we go from flat to general curved space-
time is the notion of the “derivative.” In introduction to general relativity, we
have introduced the covariant derivative and absolute derivative. We shall

79
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revisit the covariant derivative, as it will be important in the derivation of La-
grangian formulation of gravitation. The covariant derivative has the form - or
forms, should I say:

Dµwν = ∂µwν − Γλµνwλ (8.4)

Dµv
ν = ∂µv

ν + Γνλνv
λ. (8.5)

Note the sign difference in the definitions. The covariant derivative is defined
differently for covariant and contravariant vectors. In fact, this follows if we
define the covariant derivative for one kind of vectors. Strictly speaking, some
of theses properties are required for the definition of the covariant derivative to
make sense and work.

1. Linearity: D(U + V ) = D(U) +D(V )

2. Product rule: D(U ⊗ V ) = D(U)⊗D(V )

3. Commutes with contractions: Dµ(Tλλρ ) = (DT ) λ
µ λρ

Next, recall the definition of the Christoffel symbol:

Γλµν =
1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) . (8.6)

Now, consider a contravariant vector V µ, we can define the divergence in
curved spacetime based on the flat 3-space definition

div~V = ∂iV
i (8.7)

by “contracting” an index and adding the Christoffel symbols:

DµV
µ = ∂µV

µ + ΓµµλV
λ. (8.8)

Next, invoking the definition of the Christoffel symbols, we can compute

Γµµλ =
1

2
gµρ(∂µgρλ + ∂λgρµ − ∂ρgµλ) (8.9)

= a (8.10)

8.2 Lagrangian Formulation

8.3 Overview

The action is

S =

ˆ
L(Φi, DµΦi) dnx. (8.11)
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L is a density.

L =
√
−gL̂ (8.12)

where L̂ is a scalar and

g = det(gij) (8.13)

is the determinant of the metric tensor. The associated Euler-Lagrange equation
is

∂L̂
∂Φ
−Dµ

(
∂L̂

∂(DµΦ)

)
= 0. (8.14)

Recall Stokes’ theorem:ˆ
Σ

∇µV µ
√
|g| dnx =

ˆ
∂Σ

nµV
µ
√
|γ|, dn−1x. (8.15)

Setting the variation equal to zero at the boundary and integrate by parts give
ˆ
Aµ(DµB)

√
−g dnx = −

ˆ
(DµA

µ)B
√
−g dnx+ boundary terms. (8.16)

Sφ =

ˆ [
−1

2
gµν(Dµφ)(Dνφ)− V (φ)

]√
−g dnx, (8.17)

The equation of motion:

�φ− dV

dφ
= 0. (8.18)

The covariant d’Alembertian now becomes

� ≡ DµDµ ≡ gµνDµDν . (8.19)

The Hilbert action

SH =

ˆ √
−g dnx. (8.20)

8.3.1 Introduction to the Lagrangian Formulation of Gen-
eral Relativity

Recall that the action in flat spacetime has the form:

S =

ˆ
L d4x. (8.21)

This is due to the fact that the metric is just ηµν = diag(1,−1,−1,−1). But
in curved spacetime, however, the metric is gµν 6= ηµν . In some sense we can
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find how the form of the action changes as we move from flat to general curved
spacetime. Consider the transformation xµ → xµ

′
, then dxµ → Xµ′

ν dx
ν . The

Jacobian matrix for this transformation is[
Xµ′

ν

]
=

[
∂xµ

′

∂xν

]
(8.22)

and

gµ′ν′ = Xα
µ′X

β
ν′gαβ . (8.23)

So the “volume” element becomes:

d4x→ d4x′ =

∣∣∣∣∂xµ′∂xν

∣∣∣∣d4x. (8.24)

Since we want our volume element to be invariant, we have to compensate with
a factor of

g = det(gµν) = |gµν |. (8.25)

But we are not quite there yet. Notice that the metric tensor has the form

[gµν ] =


+
−
−
−

 , (8.26)

which means det(gµν) < 0. So, we use −g > 0. From Eq. (8.25), we get that

g′ =

∣∣∣∣ ∂x∂x′
∣∣∣∣2g. (8.27)

So,

g′ =

∣∣∣∣∂x′∂x

∣∣∣∣−2

g, (8.28)

which means √
−g′ =

∣∣∣∣∂x′∂x

∣∣∣∣−1√
−g, (8.29)

since −g,−g′ > 0. Therefore,

d4x
√
−g = d4x′

∣∣∣∣∂x′∂x

∣∣∣∣−1∣∣∣∣∂x′∂x

∣∣∣∣√−g′ = d4x′
√
−g′. (8.30)

We have

d4x
√
−g = d4x′

√
−g′ (8.31)
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as desired. Now, just for sanity check, we can return to flat spacetime where
g′µν = gµν = ηµν = diag(1,−1,−1,−1). Then, −g = 1 hence

√
−g = 1, which

says d4x
√
−g = d4x = d4x′ = d4x′

√
−g′. So, for curved spaces the action is

given by

S =

ˆ
d4x
√
−gL (8.32)

For pure gravity (no matter), the action is called the Einstein-Hilbert
action

S =

ˆ
d4x
√
−g 1

16πG
R (8.33)

where R is the Ricci scalar, defined by a contraction

R = Rµµ = Rµνµν = gµνRµν (8.34)

where Rµν is defined in terms of other contractions

Rµν = Rλµλν = gλρRρµλν . (8.35)

We also recall that

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (8.36)

where the Christoffel symbols are defined in terms of the metric tensor:

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) . (8.37)

8.3.2 Variation on the metric tensor, without matter: Tµν =
0

To find the physical laws or the equations of motion, we need to vary the action
with respect to gµν and gµν since it is written in terms of the metric (the field
of interest is the metric). To start, we must pick gµν or gµν as the fundamental
field. The choice shouldn’t matter, but for certain conveniences, we shall pick
gµν as the fundamental field.

Now, gµν (the metric tensor) and gµν (its inverse) obey

gµνgνσ = δνσ, (8.38)

which is covariantly constant. So,

(δgµν)gνσ + gµν(δgνσ) = 0, (8.39)

i.e.,

(δgµν)gνσ = −gµν(δgνσ) (8.40)
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Multiplying with gσρ we get

(δgµν)gνσg
σρ = −gµνgσρ(δgνσ) (8.41)

(δgµν)δνρ = −gµνgσρ(δgνσ) (8.42)

i.e.,

δgµρ = −gµνgσρδgνσ. (8.43)

We an rewrite this as

δgµν = −gµαgνβδgαβ . (8.44)

Likewise,

δgµν = −gµαgνβδgαβ . (8.45)

Now, consider

√
−gL ∼

√
−gR =

√
−ggµνRµν (8.46)

We have,

δ(
√
−gL) ∼ δ(

√
−gR)

= δ
[√
−ggµνRµν

]
= (δ
√
−g)gµνRµν +

√
−g(δgµν)Rµν + (

√
−g)gµν(δRµν). (8.47)

First, we want to find δ
√
−g in terms of δgµν . We already know that g =

det(gµν), so we use the following identity for matrices

ln(det(M)) = Tr(ln(M)), (8.48)

which can be a fun exercise to verify. Varying this identity, we get

δ ln(det(M)) = δTr(ln(M)), (8.49)

i.e.,

1

det(M)
δ det(M) = Tr(δ ln(M)) = Tr

(
M−1δM

)
. (8.50)

If we let M = [gµν ] and M−1 = [gµν ] then we have

ln(g) = Tr(ln[gµν ]). (8.51)

Varying with respect to the metric, we get

1

g
(δg) = Tr(gµνδgµν). (8.52)



8.3. OVERVIEW 85

But since gµνδgµν is just a number, Tr(gµνδgµν) = gµνδgµν . Hence,

δg = ggµνδgµν = −ggµνδgµν . (8.53)

Then

δ
√
−g = δ(−g)1/2

=
1

2
(−g)−1/2δ(−g)

=
−1

2

1√
−g

δg

=
−1

2

1√
−g

(−g)gµνδg
µν

=
−1

2

√
−ggµνδgµν (8.54)

i.e.,

δ
√
−g =

−1

2

√
−ggµνδgµν =

1

2

√
−ggµνδgµν (8.55)

Now, what about δR = δRµν? Recall that

δ(
√
−gR) = (δ

√
−g)(gµνRµν) +

√
−g(δgµν)Rµν + (

√
−g)gµν(δRµν)

= (δ
√
−g)R+

√
−g(δgµν)Rµν + (

√
−g)gµν(δRµν)

=
−1

2

√
−ggµν(δgµν)R+

√
−g(δgµν)Rµν + (

√
−g)gµν(δRµν) (8.56)

Since we have found δ
√
−g in terms of δgµν ,

δ(
√
−gR) =

√
−g
(
Rµν −

1

2
gµνR

)
δgµν +

√
−ggµνδRµν . (8.57)

We immediately recognize the Einstein tensor Gµν

Gµν = Rµν −
1

2
gµνR. (8.58)

From the Einstein equations, we know that

Gµν = 8πGTµν . (8.59)

But since there is no matter, Tµν = 0, i.e., Gµν = 0. So, if we do the variations
correctly, we should get

Rµν −
1

2
gµνR = 0. (8.60)
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It turns out that after some simplification

ˆ
d4x
√
−ggµνδRµν = 0 (8.61)

which means we don’t have to worry about the third term in the expansion of
δ
√
−gR that involves δRµν . Therefore, with

S =

ˆ
d4x
√
−g 1

16πG
R, (8.62)

we have

16πGδS =

ˆ
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν = 0, (8.63)

since we require varying the action gives zero, which implies

Rµν −
1

2
gµνR = 0 (8.64)

as expected.

Example 8.3.1. Verify Eq. (8.61).

Solution 8.3.1. We want to show that
ˆ

d4x
√
−ggµνδRµν = 0. (8.65)

Recall that the Ricci tensor is a contraction of the Riemann tensor, which is
given by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (8.66)

Consider arbitrary variations of the connection:

Γρνµ → Γρνµ + δΓρνµ. (8.67)

Since δΓρνµ is a difference between the two connections, it is a tensor. Hence we
take its covariant derivative:

Dλ(δΓρνµ) = ∂λ(δΓρνµ) + ΓρλσδΓ
σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ. (8.68)

We can then show to first order (in 8.3.3) that

δRρµλν ≈ Dλ(δΓρνµ)−Dν(δΓρλµ), (8.69)
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so, variation on the contraction is

δRµν = δRλµλν ≈ Dλ(δΓλνµ)−Dν(δΓλλµ). (8.70)

So we can write

ˆ
d4x
√
−ggµνδRµν =

ˆ
d4x
√
−ggµν

[
Dλ(δΓλνµ)−Dν(δΓλλµ)

]
(8.71)

=

ˆ
d4x
√
−gDσ

[
gµν(δΓσνµ)− gµσ(δΓλλµ)

]
. (8.72)

We will verify the second equality in 8.3.2. Now,

δΓσµν = −1

2

[
gλµDν(δgλσ) + gλνDµ(δgλσ)− gµαgνβDσ(δgαβ)

]
. (8.73)

Therefore,

ˆ
d4x
√
−ggµνδRµν =

ˆ
d4x
√
−gDσ

[
gµνD

σ(δgµν)−Dλ(δgσλ)
]
. (8.74)

But notice that this result is an integral with respect to the natural volume
element of the covariant divergence of a vector. So, by Stokes’ theorem, this
is equal to a boundary contribution at infinity, which we can (in a hand-wavy
manner) set to zero by making the variation vanish at infinity, i.e.,

ˆ
d4x
√
−ggµνδRµν = 0, (8.75)

as we wanted. So, this term does not contribute the action variation.

Example 8.3.2. Verify the following approximation in Eq. (8.69)

δRρµλν ≈ Dλ(δΓρνµ)−Dν(δΓρλµ) (8.76)

to first order.

Solution 8.3.2. Do this

Example 8.3.3. Verify the equality used in Eq. (8.71)

gµν
[
Dλ(δΓλνµ)−Dν(δΓλλµ)

]
= Dσ

[
gµν(δΓσνµ)− gµσ(δΓλλµ)

]
(8.77)

Solution 8.3.3. Do this



88PART 8. GRAVITATION AND LAGRANGIAN FORMULATIONOFGENERAL RELATIVITY

With non-zero cosmological constant Λ and no matter (Tµν = 0), the action
simply becomes:

S =
1

16πG

ˆ
d4x
√
−g(R− 2Λ). (8.78)

Then,

Rµν −
1

2
gµνR+ Λgµν = 0. (8.79)

Example 8.3.4. Verify Eq. (8.79).

Solution 8.3.4. We simply repeat what we have done before:

16πG(δS) =

ˆ
d4xδ

(√
−g(R− 2Λ)

)
=

ˆ
d4xδ(

√
−gR)− 2Λδ

√
−g

=

ˆ
d4xδ

(√
−ggµνRµν

)
− 2Λδ

√
−g

=

ˆ
d4xδ

(√
−ggµνRµν

)
− 2Λδ

√
−g

=

ˆ
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν − 2Λ

(
−1

2

√
−ggµν

)
δgµν

=

ˆ
d4x
√
−g
(
Rµν −

1

2
gµνR+ Λgµν

)
δgµν

= 0. (8.80)

Since we require δS = 0,

Rµν −
1

2
gµνR+ Λgµν = 0 (8.81)

must hold.

8.3.3 Variations on the metric tensor, with matter: Tµν 6=
0

A natural question is how we can add matter into the action. It turns out that
we simply add a matter Lagrangian to the Lagrangian density:

S =

ˆ
d4x
√
−g
(

1

16πG
(R− 2Λ) + Lmatter

)
, (8.82)
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where the matter Lagrangian term Lmatter also involves the metric:

L = −1

2
(∂µφ)gµν(∂νφ)− 1

2
m2φ2, (8.83)

where φ is a scalar field. One thing to notice is that there is an interaction
between the field and the metric. This makes things a little more complicated.

If we want to vary this action, we will have to include the term

δ

(√
−g
[
−1

2
(∂µφ)gµν(∂νφ)− 1

2
m2φ2

])
. (8.84)

These extra terms will contribute to Tµν . So we simply define

δS = δSg + δSM = δ

(ˆ
d4x
√
−g 1

16πG
(R− 2Λ) +

ˆ
d4x
√
−gLM

)
(8.85)

and

δ
(√
−gLM

)
= −1

2

√
−gTµνδgµν (8.86)

or

Tµν =
−2√
−g

δ

δgµν
[√
−gLM

]
(8.87)

With that, for Λ = 0,

δS =

ˆ
d4x

√
−g

16πG

(
Rµν −

1

2
gµνR

)
δgµν + δ(

√
−gLM )

=

ˆ
d4x

[
1

16πG

(
Rµν −

1

2
gµνR

)
− 1

2
Tµν

]√
−gδgµν

= 0. (8.88)

Therefore,

1

16πG

(
Rµν −

1

2
gµνR

)
=

1

2
Tµν . (8.89)

So, we get the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (8.90)

Now, if

LM = −1

4
FµνFµν (8.91)
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then

√
−gLM = −1

4

√
−gFµνgµαgνβFαβ (8.92)

and we can show that

Fµν = DµAν −DνAµ = ∂µAν − ∂νAµ. (8.93)

We can vary this with respect to gµν to get Tµν (which we can readily verify)

Tµν = FµλF
λ

ν −
1

4
gµνFαβF

αβ (8.94)

We can actually check and see that this is actual energy-momentum stress ten-
sor. For instance,

T00 ∼ ( ~E2 + ~B2) ∼ Energy density (8.95)

T0j ∼ Poynting vectors. (8.96)

Example 8.3.5. Verify Eq. (8.94).

Solution 8.3.5. We start from the definition of the energy-momentum stress
tensor:

Tµν =
−2√
−g

δ

δgµν
[√
−gLM

]
. (8.97)

To make the simplification a little easier, we shall assume δ is with respect to
gµν implicitly, so we just write:

−1

2

√
−gTµνδgµν = δ

[√
−gLM

]
(8.98)

instead. By (8.92)

δ
[√
−gLM

]
= δ

(
−1

4

√
−gFµνgµαgνβFαβ

)
= −1

4
(δ
√
−g)FαβF

αβ − 1

4

√
−gδ

(
Fµνg

µαgνβFαβ
)
. (8.99)

We know that

δ
√
−g = −1

2

√
−ggµνδgµν . (8.100)

And,

δ
(
Fµνg

µαgνβFαβ
)

= gνβFµνFαβδg
µα + gµαFµνFαβδg

νβ . (8.101)
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With respect to gµν :

δ
(
Fµνg

µαgνβFαβ
)

= gνβFµνFαβδg
µα + gµαFµνFαβδg

νβ

= FµνFαβ

[
δναg

νβ + δµβg
µα
]
δgµν

=
[
FµνFαβδ

ν
αg

νβ − FνµFαβδµβg
µα
]
δgµν

=
[
F β
µ Fνβ − F α

ν Fαµ
]
δgµν

=
[
F β
µ Fνβ + F α

ν Fµα
]
δgµν

= 2
(
FµλF

λ
ν

)
δgµν , (8.102)

where we have used the anti-symmetric property of Fµν (and Fµν) and λ is
a dummy variable replacing α, β in the contraction. So, putting everything
together,

Tµν =
−2√
−g

δ

δgµν
[√
−gLM

]
=
−2√
−g

[(
1

8

√
−ggµνFαβFαβ

)
− 1

4

√
−g (???)

]
= −1

4
gµνFαβF

αβ +
1

2

[
2
(
FµλF

λ
ν

)]
= −1

4
gµνFαβF

αβ + FµλF
λ

ν . (8.103)

Thus we have shown

Tµν = FµλF
λ

ν −
1

4
gµνFαβF

αβ . (8.104)

8.4 Properties of Einstein Equations
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Part 9

Diffeomorphism, Vierbein
Formalism, and general
spacetime symmetries

9.1 Overview of Diffeomorphisms and the Lie
Derivative

Loosely speaking, a diffeomorphism is a mapping of one manifold to another. It
is an isomorphism of smooth manifolds. It is an invertible function that maps
one differentiable manifold to another such that both the function and its in-
verse are smooth.

In general relativity, a diffeomorphism is a mapping of spacetime to itself.
Before getting rigorous, we can think of a simple diffeomorphism as a mapping
of point P with Xµ to point Q with Xµ + ξµ. We would like to know how
scalars,vectors, and tensors change under diffeomorphisms. It turns out that
diffeomorphisms are tightly related to Lie algebra, and thus quite naturally
changes in tensors are given by the Lie derivative.

General coordinate transformations are a type of diffeomorphism. Within
general coordinate transformations, there are two kinds: passive and active.
Passive transformations only change “perspective” roughly speaking, i.e., we
only change the coordinates describing a tensor, while active transformations
actively alternate tensors.

An example of a passive transformation is rotation in coordinates by some
angle θ - tilting our frame of reference. An example of an active transformation
is a rotation of a vector ~A by an angle −θ.

Here we see that the new components of ~A in X ′ frame under a passive

93
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insert figure here

transformation are the same as the components of Ai
′

of ~A′ under an active
transformation.

Symmetries always involve active transformations. With unbroken symme-
tries passive and active transformations are inverses of each other.

In general relativity, a diffeomorphism is an active transformation Aµ → A′µ

under moving or translating Xµ → Xµξµ. The passive version is a general trans-
formation. Since this is invertible, the corresponding passive transformation is
Xµ → Xµ − ξµ. We can use the inverse general coordinate transformation to
find the form of the Lie derivative. Let Lξ denote a Lie derivative using ξµ.
Then under diffeomorphism,

Aµ → Aµ + LξAµ
Aµ → Aµ + LξAµ.

If δS = 0 under diffeomorphism, then the theory is diffeomorphism-invariant.
General relativity is diffeomorphism-invariant.

Let us consider an infinitesimal general coordinate transformation:

Xµ′ = Xµ − ξµ. (9.1)

Now, a vector under general coordinate transformation obeys

Aµ
′
(x′) = Jµ

′

ν A
ν(x)

where Jµ
′

ν denotes the Jacobian matrix whose elements are

Jµ
′

ν =
∂Xµ′

∂Xν
=

∂

∂Xν
(Xµ − ξµ) = δµν − ∂νξµ (9.2)

It follows that

Aµ
′
(x′) = (δµν − ∂νξµ)Aν(x) (9.3)

where we can Taylor expand Aµ
′
(x′) at x′ = x− ξ to get

Aµ
′
(x− ξ) ≈ Aµ

′
(x)− ξν∂νAµ

′
(x) + . . . (9.4)

Then use the fact that

ξν∂νA
µ′(x) ≈ ξν∂νAµ(x) + . . . (9.5)

we get

Aµ
′
(x′) = Aµ

′
(x)− ξν∂νAµ(x) = Aµ(x)− (∂νξ

µ)Aν(x). (9.6)
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And therefore

Aµ
′
(x) = Aµ(x)− (∂νξ

µ)Aν(x) + ξν(∂νA
µ(x)) (9.7)

We require that this gives the same result as for the active diffeomorphism:
Aµ(x) → A′µ(x) = Aµ(x) + LξAµ(x). So the Lie derivative of a contravariant
vector must be defined such that

LξAµ(x) = −(∂νξ
µ)Aν(x) + ξν(∂νA

µ(x)) (9.8)

We note that this definition does not involve parallel transport, which means
the Christoffel symbols also don’t appear.

For a scalar φ(x), under the diffeomorphism Xµ → Xµ′ = Xµ−ξµ, we know
that

φ(x) = φ′(x′) = φ′(x− ξ) ≈ φ(x)− ξν∂νφ′(x)(x) ≈ φ′(x)− ξν∂νφ(x). (9.9)

Therefore,

φ′(x) = φ(x) + ξν∂νφ(x) (9.10)

Under a diffeomorphism Xµ → Xµ + ξµ, we want

φ(x)→ φ′(x′) = φ(x) + Lξφ(x). (9.11)

Thus, the Lie derivative of a scalar must be defined such that

Lξφ(x) = ξν∂νφ(x) (9.12)

Next, we can find the form of the Lie derivative of a covariant vector, Aµ(x) by
considering

Aµ′(x
′) = Jνµ′Aν(x). (9.13)

We can verify that

Xν
µ′ = δνµ + ∂µξ

ν (9.14)

by multiplying the Jacobian matrix and its inverse and show this is the identity
matrix:

Jνµ′J
µ′

γ = (δνµ + ∂µξ
ν)(δµγ + ∂γξ

µ) (9.15)

= δνγ − ∂γξν + ∂γξ
ν (9.16)

= δνγ (9.17)
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So then

Aµ′(x
′) = Jνµ′Aν(x) (9.18)

= (δνµ + ∂µξ
ν)Aν(x) (9.19)

= Aµ(x) + (∂µξ
ν)Aν(x). (9.20)

Once again, we Taylor expand at x′ = x− ξ to get

Aµ′(x
′) = Aµ′(x− ξ) (9.21)

≈ Aµ′(x)− ξν∂νAµ′(x) (9.22)

≈ Aµ′(x)− ξν∂νAµ(x). (9.23)

Then,

Aµ′(x) = Aµ(x) + (∂µξ
ν)Aν(x)− ξν(∂νAµ(x)). (9.24)

We claim that (and this is totally legitimate as we will show later when we look
at the Lie derivative more rigorously) this result is the same as how Aµ(x) →
Aµ′(x) = Aµ(x) + LξAµ(x) under the diffeomorphism Xµ → Xµ + ξµ. Thus,
we get the Lie derivative of a covariant derivative:

LξAµ(x) = (∂µξ
ν)Aν(x) + ξν∂νAµ(x) (9.25)

Given these, we can now guess the form of the Lie derivative for a general tensor,
say τµνσ :

Lξτµνσ = −(∂αξ
µ)τανσ − (∂αξ

ν)τµασ + (∂σξ
α)τµνα + ξα∂ατ

µν
σ (9.26)

We will of course look at the most general case later when we look at the math-
ematics more carefully in Sean Carroll’s book.

Next, let us look at the most important tensor the metric tensor gµν .
Under a diffeomorphism gµν → gµν+Lξgµν , we can show that the Lie derivative
of the metric tensor has the following form, from definition

Lξgµν = (Dµξ
α)gαν + (Dνξ

α)gµα + ξαDαgµν . (9.27)

As an aside: the Lie derivative can be written completely in covariant derivatives
(and not partial derivatives) and still remain equivalent, as we will show in
an exercise. As a consequence, Lie derivatives of tensors and tensors. This
fact comes in handy right now when we work with the metric tensor, which is
covariantly constant, i.e.,

Dαgµν = 0, (9.28)

so not only can we drop the last term but we can also pull the metric tensor
into the covariant derivative. And so the Lie derivative of gµν reduces to

Lξgµν = Dµ (gανξ
α) +Dν (gµαξ

α) . (9.29)
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But now the metric tensor acts on ξα and lower the index to a corresponding one,
and thus the Lie derivative of the metric tensor has this very nice, symmetric
form

Lξgµν = Dµξν +Dνξµ (9.30)

And so under a diffeomorphism the metric tensor transforms as

gµν → gµν + Lξgµν = gµν +Dµξν +Dνξµ. (9.31)

We notice that if we have not invoked the covariant derivatives, the we will not
get this nicely simplified formula involving only partial derivatives.

Here is the following layout for what we will do next:

• Look at the mathematics of diffeomorphism

• Look at some basic mathematics of Lie algebra

• See how diffeomorphisms are a symmetry of general relativity, and what
it means to break diffeomorphism.

9.2 Spacetime Symmetry

In this section we want to consider

1. Global Lorentz Transformation in Minkowski spacetime (no gravity)

2. Diffeomorphism in curved spacetime (with gravity)

3. Local Lorentz Transformations in curved spacetime (with gravity)

9.2.1 Global Lorentz Transformations in Minkowski Space-
time

We know that Lorentz Transformations are coordinate transformations Xµ →
Xµ′ , given by

Xµ′ = Λµ
′

ν X
ν , (9.32)

where the Λµ
′

ν are constants. For vectors,

Vµ′ = Λνµ′Vν V µ
′

= Λµ
′

= Λµ
′

ν V
ν . (9.33)

The transformations also have inverses:

Λµ
′

ν A
ν
α′ = δµ

′

α′ = δµα = Λµν′Λ
ν′

α . (9.34)
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Also,

ηµ′ν′ = Λαµ′Λ
β
ν′ηαβ (9.35)

However, all this is from the passive point of view. Now, we want to look at
the active Lorentz Transformations where Xµ doesn’t change (i.e., no primed
indices). Notice that we have been writing Λµ

′

ν with one index on top of another.
Now, distinguish Λ ν

µ versus Λνµ . But we keep the “inverse” identities:

Λ α
µ Λµβ = δαβ = ΛαµΛ µ

β . (9.36)

We must also keep

ηµν → Λ α
µ Λ β

ν ηαβ = ηµν , (9.37)

i.e., the Minkowski metric is unchanged, as expected, since we haven’t changed
anything major yet.

Now, consider infinitesimal Lorentz Transform{
Λ ν
µ = δνµ + ε ν

µ

Λµν = δµν + εµν
(9.38)

where ε ν
µ is a small and constant, and we neglect squared terms. We have that

Λ α
µ Λµβ = (δαµ + ε α

µ )(δµν + εµν) (9.39)

= δαν + εαν + ε α
ν +O, = δαν , (9.40)

provided that εαβ = −ε α
β . We also have that

ΛµαΛ α
ν = (δµα + εµα)(δαν + ε α

ν )

= δµν + εµν + ε µ
ν +O

= δµν ,

provided that εµν = −ε µ
ν . Furthermore,

ηµν = Λ α
µ Λ β

ν ηαβ

= ηµν + ε α
µ ηαν + ε β

ν ηµβ

= ηµν + εµν + ενµ

= ηµν ,

since

εµν = −ενµ

So, we conclude that the Minkowski is unchanged if the above equality holds.
The parameters εµν are anti-symmetric and 4-dimensional, and hence has 6 in-
dependent components.

With this, we can summarize how things transform under infinitesimal Lorentz
transformations:
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1. Scalars: φ→ φ, i.e., invariant.

2. Coordinates: Xµ’s don’t change.

3. d4x doesn’t change.

4. Minkowski metric is invariant: ηµν → ηµν .

However, all dynamical vectors and tensors change:{
Aµ → Aµ + ε ν

µ Aν

Aµ → Aµ + εµνA
ν

. (9.41)

For a tensor:

τµνλ → τµνλ + εµατ
αν
λ + ενατ

µα
λ + ε α

λ τµνα . (9.42)

Now, when will

S =

ˆ
d4xL (9.43)

be invariant, i.e., (δS = 0) under global Lorentz transformations? If L is a
scalar function then under a global Lorentz transformation, L → L. So, then
we must have S → S, or δS = 0, which says we have a symmetry.

Example 9.2.1. Is

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 (9.44)

a scalar under Lorentz transformations?

Solution 9.2.1. Under Lorentz transformation, φ → φ, φ2 → φ2, and so
1
2m

2φ2 → 1
2m

2φ2. Now, {
∂µφ→ ∂µφ+ ε α

µ ∂αφ

∂µφ→ ∂µφ+ εµα∂
αφ

. (9.45)

So,

(∂µφ)(∂µφ) = (ε α
µ ∂αφ+ ∂µφ)(εµα∂

αφ+ ∂µφ) (9.46)

= O + (∂µφ)(pµφ) + (∂µφ)(εµα∂
αφ) + (∂µφ)(ε α

µ ∂αφ) (9.47)

= (∂µφ)(∂µφ) + εµα(∂αφ)(∂µφ) + εµα(∂αφ)(∂µφ). (9.48)

Now,

εµα(∂αφ)(∂µφ) = −εαµ(∂µφ)(∂αφ) (9.49)

= −εαµ(∂αφ)(∂µφ). (9.50)
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So,

εµν(∂αφ)(∂µφ) = 0. (9.51)

And thus,

(∂µφ)(∂µφ)→ (∂µφ)(∂µφ). (9.52)

Example 9.2.2. Show that

L = −1

4
FµνF

µν +m2AµA
µ (9.53)

is a scalar under global Lorentz transformation.

Solution 9.2.2. Use the fact that Fµν is a tensor, so that

Fµν → Fµν + ε α
µ Fαν + ε α

ν Fµα. (9.54)

Likewise, for AµA
µ. Next, show that L → L.

9.2.2 Diffeomorphism in Curved Spacetime

S =

ˆ
d4x
√
−gL. (9.55)

Under diffeomorphism with ξµ, scalars and tensors transform with changes given
by the Lie derivatives.

1. Scalars:

φ→ φ+ ξα∂αφ (9.56)

φ→ φ+ ξαDαφ. (9.57)

2. Covariant vectors:

Aµ → Aµ + (∂µξ
α)Aα + ξα∂αAµ (9.58)

Aµ → Aµ + (Dµξ
α)Aα + ξαDαAµ. (9.59)

3. Contravariant vectors:

Aµ → Aµ − (∂αξ
µ)Aα + ξα∂αA

µ (9.60)

Aµ → Aµ − (Dαξ
µ)Aα + ξαDαA

µ. (9.61)

4. Tensors:

τµν → τµν − (Dαξ
µ)ταν + (Dνξ

α)τµα + ξαDατ
µ
ν . (9.62)
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Now,

gµν → gµν +Dµξν +Dνξµ. (9.63)

So this means
√
−g also transforms. In fact, we can find the identities:

Γµµν =
1√
−g

∂ν
√
−g (9.64)

DERIVATION IS LEFT AS EXERCISE. And with this we can show that

DµV
µ =

1√
−g

∂µ
(√
−gV µ

)
(9.65)

DERIVATION IS LEFT AS EXERCISE. With these identities, the Lie
derivative of

√
−g can be found.

√
−g →

√
−g + ∂α

(√
−gξα

)
. (9.66)

And thus this says

Lξ
√
−g = ∂α

(√
−gξα

)
=
√
−gDµξ

µ (9.67)

If L is a scalar under diffeomorphism, then

L → L+ ξα∂αL. (9.68)

But what about the action S? Under diffeomorphism, since d4x doesn’t change,

S →
ˆ

d4x
[√
−g + ∂α

(√
−gξα

)]
(L+ ξα∂αL) (9.69)

=

ˆ
d4x
√
−gL+

ˆ
d4x

[√
−gξα∂αL+ ∂α

(√
−gξα

)
L
]

(9.70)

= S +

ˆ
d4x ∂α

(√
−gξαL

)
. (9.71)

Thus, using Gauss’ theorem in four dimensions

S → S +

ˆ
∂Ω

d3x n̂α
(√
−gξαL

)
. (9.72)

As we push the 3-dimensional surface to infinity where ξα = 0, S → S, and
thus δS = 0. The action is unchanged under diffeomorphism, and hence we also
have a symmetry in general relativity.
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9.2.3 Local Lorentz Transformation & Vierbein Formal-
ism

Lorentz symmetry are local symmetries in local frames. Local Lorentz frames
exist at every point, so we can always coordinate transform into a local Lorentz
frame at a point P , so that the metric is Minkowskian, i.e.,

gµν → gµ′ν′ = Xα
µ′X

β
ν′gαβ = ηµ′ν′ (9.73)

at point P . However, if there is curvature, then Rλ
′

µ′ν′σ′ 6= 0 at P still holds,
since the Riemann curvature tensor depends on ∂Γ, the partial derivatives of
the Christoffel symbols.

There is another way, though, to go without using a coordinate transforma-
tion. That is to use Vierbeins.

Roughly speaking, Vierbeins are local vectors in a tangent space that per-
forms “a change of basis.”

gµν = eaµe
b
νηab (9.74)

With Vierbeins, we can redefined general relativity by making them dynamical.
Any tensor can be written as

Aµ = e a
µ Aa (9.75)

where Aµ is a component in local Lorentz basis. There’s also the concept of an
inverse Vierbein:

eµae
a
ν = δµν (9.76)

eµae
b
µ = δab . (9.77)

Then,

gµν = eµae
ν
bη
ab. (9.78)

It is easy to verify that gµαgαν = δµν :

gµαgαν = eµce
α
dη
cde f

α e g
ν ηfg (9.79)

= eµcδ
f
d e

g
ν η

cdηfg (9.80)

= eµce
g
ν η

cfηfg (9.81)

= eµce
g
ν δ

c
g (9.82)

= eµce
c
ν (9.83)

= δµν . (9.84)
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Next, we can also look at the determinant of gµν , where gµν = e a
µ e b

ν ηab =

e a
µ ηabe

b
ν :

g = det(g) (9.85)

= e (det(η)e) (9.86)

= e(−1)e (9.87)

= e2. (9.88)

Therefore,

√
−g = e (9.89)

So, the action under Vierbein formalism is

S =

ˆ √
−g d4xL(gµν , Aµ, . . . ) =

ˆ
e d4xL(e a

µ , Aa, . . . ) (9.90)

One of the advantages of the Vierbein formalism is the ability to incorpor-
tate spinors that describe Fermions into the action and Lagrangian. Spinors
are neither vectors nor tensors nor scalars. In other words, there are no vec-
tor/tensor representation for Fermions. They are just spinors - a completely
different mathematical object. There is no problem dealing with Fermions in
special relativity, since special relativity has spinor representation under the
Lorentz group. However, general relatibity has no representation for these un-
der diffeomorphisms if we don’t use Vierbeins.

In particular, in the relativistic quantum theory developed by Paul Dirac,
the Dirac Lagrangian is given by

L = i(∂µψ̄)γµψ, (9.91)

which is a mixture of spinors and vectors, where γµ is the four-component spinor.
The theory actually makes use of a four components, with two describing ordi-
nary Fermions, while the other two describes anti-particles.

Back to general relativity. Vierbeins allow us to include Fermions into gen-
eral relativity, making them vectors in spacetime. Since there is no unique local
Lorentz basis at any point P , we can rotate or boost. And so, these vectors in
spacetime must follows transformation rules:

e a
µ → e a

µ + εabe
b
µ . (9.92)

But Vierbeins are also vectors under diffeomorphisms:

e a
µ → e a

µ + (Dµξ
α)e a

α + ξαDαe
a
µ . (9.93)
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With these, we can also look at how the metric transforms. First, under diffeo-
morphism:

gµν = e a
µ e b

ν ηab (9.94)

→
(
e a
µ + (Dµξ

α)e a
α + ξαDαe

a
µ

) (
e b
ν + (Dνξ

α)e b
α + ξαDαe

b
µ

)
ηab.

(9.95)

Expand this out to first order, we get

gµν → gµν + (Dµξ
α)e a

α e b
ν ηab + ξαDαe

a
µ e b

ν ηab

+ e a
µ (Dνξ

α)e b
α ηab + e a

µ ξαDαe
b
µ ηab (9.96)

= gµν + (Dµξ
α)gαν + (Dνξ

α)µα + ξαDα

(
e a
µ e b

ν ηab
)

(9.97)

= gµν + (Dµξ
α)gαν + (Dνξ

α)µα + ξαDαgµν (9.98)

= gµν + (Dµξ
α)gαν + (Dνξ

α)µα (9.99)

= gµν + Lξgµν (9.100)

as expected, where we have used the fact that the metric is covariantly constant.
On other hand, what about under local Lorentz transformations?

gµν = e a
µ e b

ν ηab (9.101)

→
(
e a
µ + εace

b
µ

) (
e b
ν + εbce

c
ν

)
ηab (9.102)

= gµν + εace
b
µ e

b
ν ηab + e a

µ εbce
c
ν ηab + . . . (9.103)

= gµν + εbce
b
µ e

b
ν + eacε

b
ce

c
ν (9.104)

= gµν + εbce
b
µ e

b
ν + ebcε

b
ce

c
ν (9.105)

= gµν + εbc
(
e b
µ e

b
ν + εbce

c
ν

)
(9.106)

= gµν + εcb
(
e c
µ e

c
ν + εcbe

b
ν

)
. (9.107)

But due the anti-symmetry in Lorentz transformations:

εbc = −εcb (9.108)

it must hold that

−
(
e b
µ e

b
ν + εbce

c
ν

)
=
(
e c
µ e

c
ν + εcbe

b
ν

)
(9.109)

which means

e c
µ e

c
ν + εcbe

b
ν = 0, (9.110)

and so

gµν → gµν (9.111)

under local Lorentz transformations. Therefore, the metric is invariant under
local Lorentz transformation, as we wanted. Now, note that the metric has 10
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independent components due to its symmetry: gµν = gνµ. Meanwhile, the Vier-
beins have 16 independent components. These 6 extra components are Lorentz
degrees of freedom. This means we can make 6 local Lorentz transformations
with εab = εba, i.e., we can gauge away 6 of these components using local Lorentz
transformations, giving 10 effectively independent components.

Now, if we consider how a Lagrangian made entire out of scalars, how would
it transform under local Lorentz transformations using the Vierbeins? Consider
L = AµA

µ, then under the Vierbein formalism:

AµA
µ =

(
e a
µ Aa

) (
eµbA

b
)
. (9.112)

Under local Lorentz transformations,

AµA
µ →

(
e a
µ + εace

c
µ

)
(Aa + ε c

a Ac) (eµb + ε cb e
µ
c)
(
Ab + εbcA

c
)

= AµA
µ + εace

c
µ Aae

µ
bA

b + e a
µ ε c

a Ace
µ
bA

b

+ e a
µ Aaε

c
b e

µ
cA

b + e a
µ Aae

µ
bε
b
cA

c. (9.113)

Now, notice that

εace
c
µ Aae

µ
bA

b + e a
µ ε c

a Ace
µ
bA

b =εac
(
e c
µ A

ceµbA
b + ε c

a A
aeµbA

b
)

(9.114)

=εca
(
e a
µ AaeµbA

b + ε ac A
aeµbA

b
)

(9.115)

=− εac
(
e c
µ A

ceµbA
b + ε c

a A
aeµbA

b
)

(9.116)

=0. (9.117)

Therefore, if the action is given in terms of scalars:

S =

ˆ
e d4xL(gµν , φ,Aµ, . . . ) (9.118)

where the Lagrangian is a scalar, then the action is invariant under local Lorentz
transformations. But without Vierbeins, Fermions are not allowed in the theory.
Under the Vierbein formalism, we not only have a scalar action that is invariant
under local Lorentz transformations, but also Fermions incorporated into the
theory.

But there is more to the story. We can ask about what happens to derivatives
in the Vierbein formalism. In the general relativity that we are familiar with,
we have seen the notion of the covariant derivative:

DµAν = ∂µAν − ΓλµνAλ. (9.119)

But what about Dνe
a
µ ? It turns out that this is not a tensor under both local

Lorentz transformations and diffeomorphism unless we change the definition
of the derivative once again. To make this work, we need a second type of
connection:

Dνe
a
µ = ∂νe

a
µ − Γλνµe

a
λ + ω a

ν be
b
µ (9.120)
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where ω is called the spin connection, which makes Dνe
a
µ a tensor. It also

turns out that

ω ab
ν = −ω ba

ν , (9.121)

and so there are 24 independent components for the spin connection. We can
then bring the definition of the spin connection to the Riemann curvature tensor,
which has the following form

Rλµνσ = ΓΓ− ΓΓ + ∂Γ− ∂Γ. (9.122)

Adding the spin connection gives us torsion, and the Riemann space becomes
Riemann-Cartan space.

9.2.4 Riemann-Cartan spacetime

Note: This subsubsection is taken from Robert Bluhm’s notes.
In graviattional theories that include fields with intrinsic spin, such as spin- 1

2
fermions, a new geometrical quantity known as torsion Tλµν can be introduced.
It is defined as

Tλµν = Γλµν − Γλνµ (9.123)

In general relativity, where the connection Γλµν is symmetric, the torsion Tλµν
simply vanishes. So in which case(s) does the torsion not vanish? The curvature
tensor is the relevant geometrical quantity in general relativity, which is sourced
by energy-momentum. The spacetime in general relativity that we have been
dealing with so far is (pseudo)-Riemannian. However, as we have pointed out
earlier, general relativity theory in this space cannot include fermions. When
spin is present, this acts as a source of spacetime torsion, and the resulting
spacetime generalizes to hat is called a Riemann-Cartan spacetime.

In a gravitational theory in Riemann-Cartan spacetime using vierbein for-
malism, both the vierbein and the spin connection are treated as independent
fields. Thus a generic action can be written as

S =

ˆ
d4x eL(e a

µ , ω a
µ b , φ, ψ,A

µ, Dµψ, . . . ), (9.124)

where e =
√
−g and φ, ψ,Aµ, Dµψ, . . . denote conventional matter fields and

their derivatives. If this action is varied with respect to the vierbein, the result
is Einstein’s equations relating the curvature to the energy momentum density.
Alternatively, if the action is varied with respect to the spin connection, the
result is the equations relation the torsion with the spin density.

Using a vierbein treatment and allowing a Riemann-Cartan geometry, it
becomes straightforward to introduce fermions. The starting point is the usual
description in terms of Dirac theory in special relativity. Quantities such as
the Dirac matrices γa are defined in a local Lorentz frame where the matrix is
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Minkowskian ηab. The vierbein is then used to define the corresponding quantity
in the spacetime frame, for example, the Dirac matrices become eµaγ

a. Partial
derivatives acting on fermions fields become covariant derivatives involving the
spin connection,

∂µψ → Dµψ = ∂µψ +
i

4
ωµabσ

abψ, (9.125)

where σab is the commutation i
2 [γa, γb].

The Lagrangian in the vierbein formalism must be a scalar with respect to
both diffeomorphism and local Lorentz transformations. For tensor quantities,
scalar combinations of tensors can be combined using either spacetime compo-
nents or local components. For example, a quadratic mass term for a vector
field can be written as

L = AµgµνA
ν (9.126)

= eµaA
ae c
µ e

d
ν ηcde

ν
bA

b (9.127)

= δcaA
aηcdδ

d
bA

b (9.128)

= AaηabA
b, (9.129)

which we have shown before. So, the vierbein drops out of scalar combinations
that do not involve derivatives, so that the combination can be witten in terms
of the local components Aa and the local metric ηab.

In deriving the equations of motion of the a gravitational theory involving
tensor quantities, such as a vector, it must there be decided whether the basic
quantities to vary in the scalar Lagrangian are the spacetime components Aµ or
the local quantitiesAa. This choice affects how the vierbein appears. It therefore
also affects the definition of the energy-momentum in a vierbein formalism,
which is obtained inside the action as

Tµ
µ

e =
1

e
eνa

δ(eL)

δe a
µ

. (9.130)

The result of varying with respect to th vierbein is Einstein’s equations (with
Λ = 0),

Gµν = 8πGTµνe . (9.131)

In general, he form of the energy-momentum tensor in the vierbein formalism
Tµνe will differ from that of the energy-momentum obtained using the metric.
This is especially the case when there is torsion. However, for consistency, the
energy-momentum tensor Tµνe is a vierbein treatment must be divergence-free,

DµT
µν
e = 0, (9.132)

meaning that it is still a conserved quantity.
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Part 10

Linearized Gravity

10.1 The metric

We suppose that the gravitational field is weak enough to be decomposable into
a Minkowski metric (ηµν = diag(−1,+1,+1,+1))plus a small perturbation:

gµν = ηµν + hµν where |hµν | � 1. (10.1)

Because hµν is small, we can ignore anything of order two or higher in hµν .
Recall that we were able to show

gµν = ηµν − hµν , (10.2)

where hµν ≈ ηµαηνβhαβ , when we looked at the Newtonian limit of GR. Just a
refresher, we did this by first showing that gµνgνλ = δµλ to first order, assuming
that products with h terms can be taken to be 0.

We can think of linearized GR as a theory of a symmetric tensor field hµν
propagating on a flat background spacetime. This theory is Lorentz invariant,
i.e, under a Lorentz transformation, xµ

′
= Λµ

′

µ x
µ, the flat metric ηµ′ν′ = ηµν is

invariant, while the perturbation transforms as

hµ′ν′ = Λµ
′

ν Λν
′

ν hµν , (10.3)

which follows the Lorentz transformation.

In the next sections, we will re-derive the necessary mathematical objects to
construct an equation of motion.

109
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10.2 The Christoffel symbols and Einstein ten-
sor

Under the perturbation gµν ≈ ηµν + hµν , the Christoffel symbols can be re-
evaluated:

Γρµν =
1

2
gρλ (∂µgνλ + ∂νgλµ − ∂λgµν) (10.4)

=
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) . (10.5)

This result comes from the fact that higher order terms are zero, and that the
Minkowski metric is a constant. With this, we can find the Riemann tensor:

Rµνλσ = ∂λΓµνσ − ∂σΓµνλ + ΓρνσΓµρλ − ΓρνλΓµρσ. (10.6)

Next, we lower an index for convenience by

Rρνλσ = gµρR
µ
νλσ ≈ ηµρR

µ
νλσ (10.7)

then observe that all the Γ2 terms contain higher orders of hµν and its deriva-
tives. So we simply ignore these Γ2 terms and keep only the Γ’s. After a bit of
index-renaming, we get

Rµνρσ = ηµλ
(
∂ρΓ

λ
νσ − ∂σΓλνρ

)
(10.8)

= ηµλ

{
∂ρ

[
1

2
ηλα (∂νhσα + ∂σhαν − ∂αhνσ)

]
−∂σ

[
1

2
ηλβ (∂νhρβ + ∂ρhβν − ∂βhνρ)

]}
(10.9)

=
1

2
{∂ρ (∂νhσµ + ∂σhµν − ∂µhνσ)− ∂σ (∂νhρµ + ∂ρhµν − ∂µhνρ)}

(10.10)

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) (10.11)

where we got from 6 terms to 4 terms because the hµν terms canceled. With
this, we can compute the Ricci tensor, by contracting the Riemann tensor over
µ and ρ with the following rule

Rab = gcdRcadb. (10.12)

Applying this rule to Rµνρσ, we obtain

Rνσ = ηµρRµνρσ (10.13)

=
1

2
ηµρ (∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) (10.14)

=
1

2
(∂ρ∂νh

ρ
σ + ∂σ∂µh

µ
ν − ∂σ∂νηµρhµρ − ∂ρ∂ρhνρ) . (10.15)
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Now, we notice a contraction h = ηµρhµρ. Plus, we also see that the first two
terms are actually summations, so let us replace the repeated indices with σ.
We also notice that we have ∂ρ∂

ρ = �. Finally, let us make ν → µ and σ → ν,
in order to get

Rµν =
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν

)
(10.16)

Let us contract the Ricci tensor again to get the Ricci scalar:

R = Rµµ (10.17)

= ηµνRµν (10.18)

= ηµν
[

1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν

)]
(10.19)

=
1

2
(∂σ∂µh

σµ + ∂ν∂σh
σν − ∂µ∂µh−�h) (10.20)

= ∂σ∂µh
σµ −�h. (10.21)

Re-assigning the indices by letting σ → µ and µ→ ν gives

R = ∂µ∂νh
µν −�h (10.22)

Finally, we put everything together to obtain the Einstein tensor:

Gµν = Rµν −
1

2
ηµνR (10.23)

We get

Gµν =
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(10.24)

In this weak field limit, the action is given by

S =

ˆ
d4x
√
−gL =

ˆ
d4xL (10.25)

where

L =
1

2

[
(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)− 1

2
ηµν(∂µh)(∂νh)

]
.

(10.26)

We know that when requiring δS = 0 ⇐⇒ δS/δhµν = 0, i.e., the variational
derivative of S with respect to hµν is zero, we get the Einstein tensor Gµν given
by

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(10.27)
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Let’s check this in xACT, as an exercise in indexing and of course in using
xACT. Here are the things we will need to do, in order: (1) importing the pack-
ages, (2) defining the manifold, (3) turning on the metric variations option, (4)
defining the metric ηµν (don’t worry about making it Minkowskian), (5) defin-
ing the perturbation hµν , (6) defining the Lagrangian, (7) taking the variational
derivative of the Lagrangian with VarD (assuming

√
−η = 1, of course).

... (import packages here)

...
DefManifold[M4 , 4, {a, b, c, d, e, f, i, k, l, m, n}]

DefMetricPerturbation /. Options@DefMetric

DefMetric[-1, \[Eta][-a, -b], CD, {"%", "\[Del]"}]

DefMetricPerturbation [\[ Eta], h, \[ Epsilon ]]

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

Here’s what we get:

Putting this back into LATEX after doing some manual contractions/simplifi-
cations, plus noting that the covariant derivative here is just the regular partial
derivatives, we find that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
(10.28)

which matches exactly with the Einstein tensor Gµν provided earlier.
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Note that when calling the perturbation metric hµν in xACT, make sure
that you are calling it by h[LI[order],-m,-n], so that xACT knows you mean
to call the perturbation metric.

Thus we confirm that the Lagrangian above gives the correct Einstein tensor.
But how is it found? Consider a general coordinate transformation:

x′µ → xµ − εµ(x). (10.29)

Then the metric changes according to

g′µν =
∂x′µ

∂xa
∂x′ν

∂xb
gab, (10.30)

where, as before,

gµν = ηµν − hµν + . . . (10.31)

How does hµν transform under this transformation? Well, we first have that

∂x′µ

∂xa
=

∂

∂xa
(xµ − εµ(x)) = δµa − ∂aεµ. (10.32)

And so treating ∂µεν as the same order as hµν we find

g′µν =
∂x′µ

∂xa
∂x′ν

∂xb
(
ηab − hab

)
= (δµa − ∂aεµ)(δνb − ∂bεν)

(
ηab − hab

)
≈ (δµa − ∂aεµ)(ηaν − haν − (∂be

ν)ηab + . . .)

≈ ηµν − hµν − (∂aε
ν)ηµa − (∂bε

µ)ηbν . (10.33)

Next, we lower the index to get h′µν :

ηcµηdνg
′µν = ηcµηdν

(
ηµν − hµν − (∂aε

ν)ηµa − (∂bε
µ)ηbν

)
ηcd − h′cd = ηcd − hcd − (∂aεd)δ

a
c − (∂bεc)δ

b
c

h′cd = hcd + ∂cεd + ∂dεc. (10.34)

And so we have

h′µν = hµν + ∂µεν + ∂νεµ (10.35)

and of course as a side product:

h′µν = hµν + ∂µεν + ∂νεµ (10.36)

and so the infinitesimal change in hab or hab is

δhµν = ∂µεν + ∂νεµ (10.37)

δhµν = ∂µεν + ∂µεµ (10.38)
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which, by the way, are actually the Lie derivatives of the perturbative metric
hµν and its inverse hµν . These formulas represent the change of the metric
perturbation under an infinitesimal diffeomorphism along the vector field εµ.

Since we want to get Gµν that is linear in hµν , we look for quadratic terms
in h and in ∂. Lorentz invariance tells us that there are four possible terms. So
the action has the form

S =

ˆ
d4x (a∂λh

µν∂λhµν + b∂λh
µ
µ∂

λhνν + c∂λh
λν∂µhµν + d∂µhλλ∂

νhµν)

(10.39)

where a, b, c, d are unknown constants. Next, we require that δS/δhµν = 0 with
δhµν = ∂µεν + ∂νεµ. This should give 3 equations with 4 unknowns. Upon
writing three unknowns in terms of the remaining unknown we can find the
form of the Lagrangian. In the end, we should be able to fix the action up to
an overall constant factor.

With δS = 0, we bring the δ into the integrand and let δL = 0. The next
step is to do variational derivatives with respect to hµν on each term in the
integrand. We shall proceed, first with the first term:

δ(∂λh
µν∂λhµν) = ∂λ(δhµν)(∂λhµν) + (∂λh

µν)∂λ(δhµν)

= ∂λ(∂µεν + ∂νεµ)(∂λhµν) + (∂λh
µν)∂λ(∂µεν + ∂νεµ)

= ∂λ(∂µεν + ∂νεµ)(∂λhµν) + (∂λhµν)∂λ(∂µεν + ∂νεµ)

= 2∂λ(∂µεν + ∂νεµ)(∂λhµν)

= 4[∂λ(∂µεν)](∂λhµν), (10.40)

where the fourth equality follows from the symmetry µ ↔ ν in a summation.
Zee says

[∂λ(∂µεν)](∂λhµν) ∼ εν∂2∂µhµν (10.41)

from “integrating by parts” freely. It turns out we have to integrate by parts
twice to get this equality. We shall proceed with the first integration by parts
with respect to some measure dω which we are not going to worry about. We
shall also assume that everything vanishes when evaluated at infinity and that
differential operators such as δ, ∂α, ∂

β ,� commute.ˆ
dω ∂λ[(∂µεν)(∂λhµν)] =

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

(∂µεν)(∂λhµν)

∣∣∣∣∞
−∞

=

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

0 =

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

=⇒ [∂λ(∂µεν)](∂λhµν) = −∂µεν∂λ∂λhµν . (10.42)
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We evaluate this term (again) by integration by parts, again over some arbitrary
measure dω we won’t worry about:

∂µ(εν∂λ∂
λhµν)

∣∣∣∣∞
−∞

=

ˆ
dω ∂µεν∂λ∂

λhµν +

ˆ
dω εν∂λ∂

λ∂µhµν

0 =

ˆ
dω ∂µεν∂λ∂

λhµν +

ˆ
dω εν∂λ∂

λ∂µhµν

=⇒ −∂µεν∂λ∂λhµν = εν ∂λ∂
λ︸ ︷︷ ︸

�

∂µhµν . (10.43)

And so, we have for the first term:

δ(∂λh
µν∂λhµν) = 4eν�∂µhµν (10.44)

Moving on the second term:

δ[(∂λh)(∂λh)] = δ[(∂λh
µ
µ)(∂λhνν)]

= (∂λδh
µ
µ)(∂λhνν) + (∂λh

µ
µ)(∂λδhνν). (10.45)

We notice that this term is very similar to the first term, except for the “position
of the index of h.” That is to say, we are finding δ of the contraction. However,
we can always write

hµµ = ηµxh
µx (10.46)

hνν = ηνyhνy. (10.47)

From here we can do some mental prepping for what to come: the metric is
constant in the eyes of δ, so we can just pull the η’s out to the left and treat
them as constants. By doing this, we’re left with ηµxηνy times a term of the form
similar to the first term except for the appearance of the indices x, y. However,
by symmetry arguments, we should be able to get

δ[(∂λh)(∂λh)] = 4εν�∂νh (10.48)

where the factor of 4 is explicitly shown here for reasons we will see later. We
shall see why this is true. First we write the contractions in terms of the original
tensor h times the metric

δ[(∂λh)(∂λh)] = (ηµxη
νy) δ[(∂λh

µx)(∂λhνy)]. (10.49)

Invoking the fact that

δhab = ∂aεb + ∂bεa

δhab = ∂aεb + ∂bεa (10.50)
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and the b↔ a symmetry argument in a summation, we find

δ[(∂λh)(∂λh)] = 2 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy) + (∂λhµx)(∂λ∂
νεy)]

= 2 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy) + (∂λh
µx)(∂λ∂νεy)]

= 4 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy)]

= 4(∂λ∂
µεµ)(∂λh)

= 4(∂λ∂µε
µ)(∂λh). (10.51)

Time to integrate by parts (again over some measure dω we won’t worry about)

∂λ[(∂µε
µ)(∂λh)]

∣∣∣∣∞
−∞

=

ˆ
dω (∂λ∂µε

µ)(∂λh) +

ˆ
dω (∂µε

µ)�h

0 =

ˆ
dω (∂λ∂µε

µ)(∂λh) +

ˆ
dω (∂µε

µ)�h

=⇒ (∂λ∂µε
µ)(∂µh) = −(∂µε

µ)�h. (10.52)

We integrate by parts again:

∂µ[εµ�h]

∣∣∣∣∞
−∞

=

ˆ
dω (∂µε

µ)�h+

ˆ
dω eµ�∂µh

0 =

ˆ
dω (∂µε

µ)�h+

ˆ
dω εµ�∂µh

=⇒ (∂µε
µ)�h = −εµ�∂µh. (10.53)

So we have for the second term

δ[(∂λh)(∂λh)] = 4εν�∂νh (10.54)

Very nice! What about the third term? We claim:

δ[(∂λh
λν)(∂µhµν)] = 2εν�∂µhµν + 2εν∂ν∂

λ∂µhµλ. (10.55)

The only way to verify this is integration by parts (surprise!). But first we have
to let δ act on the h’s and write things out in terms of ε’s:

δ[(∂λh
λν)(∂µhµν)] = (∂λ(∂λεν + ∂νελ))(∂µhµν) + (∂λh

λν)(∂µ(∂µεν + ∂νεµ)).
(10.56)

We will treat these two terms differently, despite the symmetry. For the first
term, we simply integrate by parts twice to get

(∂λ(∂λεν + ∂νελ))(∂µhµν) = 2(∂λ∂
λεν)(∂µhµν)

= −2(∂λεν)(∂λ∂
µhµν)

= 2(εν)(∂λ∂λ∂
µhµν)

= 2(εν)�∂µhµν . (10.57)
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We recognize that, for the second term, by exchanging the indices µ → ν →
λ→ µ, then appropriately lowering and raising the indices on the second term,
then use the λ ↔ ν symmetry argument in the Lie derivative summation, we
get

(∂µh
µλ)(∂ν(∂λεν + ∂νελ)) = (∂µhµλ)(∂ν(∂λεν + ∂νελ))

= 2(∂µhµλ)(∂ν∂
λεν). (10.58)

From here, we will integrate by parts twice to get what we want. I won’t be
showing all the steps here because we can now do this integration by parts
“internally:”

2(∂µhµλ)∂ν(∂λεν) = −2(∂ν∂
µhµλ)(∂λεν) = 2εν∂λ∂ν∂

µhµλ = 2εν∂ν∂
λ∂µhµλ,

(10.59)

where the last equality follows from the fact that these differential operators
commute. Recognize the pattern in the first two equalities? Every time we
integrate by parts, we essentially let one derivative act on another factor (say
let ∂ν act on the ∂h instead of on ε). Since the total derivative is zero when
evaluated at infinity, this new quantity is equal to minus the original quantity.
We keep doing this until all derivatives are sandwiched between εν and hµλ.

So we have for the third term

δ[(∂λh
λν)(∂µhµν)] = 2εν�∂µhµν + 2εν∂ν∂

λ∂µhµλ (10.60)

What about the fourth term? Once again we have a contraction, which
means we need to write it out in terms of the metric η, then pull it outside of
the derivative since it is just a constant in the eyes of δ. We also invoke the
symmetry argument once again with derivatives of the ε’s. So,

δ[∂µhλλ∂
νhµν ] = δ[ηλx∂

µhλx∂νhµν ]

= (ηλx)δ[∂µhλx∂νhµν ]

= (ηλx)
{
∂µ(∂λεx + ∂xελ)∂νhµν + ∂µhλx∂ν(∂µεν + ∂νεµ)

}
= 2(∂µ∂λελ)∂νhµν + (2∂µh)∂ν(∂µεν). (10.61)

Integrate by parts the first term (twice) to get

2(∂µ∂λελ)∂νhµν = 2ελ∂
λ∂µ∂νhµν . (10.62)

Integrate by parts the second term (twice) to get

(2∂µh)∂ν(∂µεν) = 2εν�∂νh. (10.63)

So we have

δ[∂µhλλ∂
νhµν ] = 2ελ∂

λ∂µ∂νhµν + 2εν�∂
νh = 2ελ∂λ∂

µ∂νhµν + 2εν�∂νh

(10.64)
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Very nice! Putting everything we’ve done so far together, we find

δ(a∂λh
µν∂λhµν + b∂λh∂

λh+ c∂λh
λν∂µhµν + d∂µh∂νh)

= 4a(εν�∂µhµν) + 4b(εν�∂νh) + c(2εν�∂µhµν + 2εν∂ν∂
λ∂µhµλ)

+ 2d(ελ∂λ∂
µ∂νhµν) + 2d(εν�∂νh)

= (4a+ 2c)(εν�∂µhµν) + (4b+ 2d)(εν�∂νh) + (2c+ 2d)(εν∂ν∂
λ∂µhλµ)

= 0. (10.65)

When holds when we let a = 1/2, then c = −1, so d = 1, which implies
b = −1/2. Thus the correct action up to an overall factor is

S =

ˆ
d4x

1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νh (10.66)

So we have successfully constructed the linearized action.

Thus even if we had never heard of the Einstein-Hilbert action we could still
determine the action gravity in the weak field limit by requiring that the action
be invariant under the transformation

xµ → x′µ − εµ(x) (10.67)

or equivalently

δhµν = h′µν − hµν = ∂µεν + ∂νεµ. (10.68)

So based on our argument in the previous section, we can now write the weak
field expansion of the action S as

Swfg =

ˆ
d4x

(
1

32πG
I − 1

2
hµνT

µν

)
(10.69)

where

I =
1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νh (10.70)

and Tµν is the stress-energy tensor associated with matter.

Graviton propagator

From the previous section we see that the weak field action Swfg has the same
quadratic structure of all the field theories we have studied, and so the graviton
propagator is once again the inverse of a differential operator. But just as in
Maxwell’s theory the relevant differential operator in the Einstein-Hilbert the-
ory does not have an inverse because of the “gauge invariance,” i.e., under a
transformation the action remains invariant. In other terms, we see that the
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kernel of the differential operator is not trivial, i.e., it is not one-to-one and
therefore cannot have a well-defined inverse.

To deal with this, we need to rely on the Faddeev-Popov method. Recall
that the Faddeev-Popov method allows us to split our integration over physi-
cally distinct configurations and those over gauge orbits.

We observe that by adding(
∂µhµν −

1

2
∂νh

λ
λ

)2

(10.71)

to the invariant Lagrangian

1

2
∂λh

µν∂λhµν −
1

2
∂λh

µ
µ∂

λhνν − ∂λhλν∂µhµν + ∂µhλλ∂
νhµν (10.72)

we get

1

2
∂λh

µν∂λhµν −
1

2
∂λh

µ
µ∂

λhνν −���
���∂λh

λν∂µhµν +���
���∂µhλλ∂
νhµν

+((((
(((((∂µhµν)(∂λhλν) −���

���∂µhµν∂νh
λ
λ +

1

4
(∂νh)(∂νh)

=
1

2
∂λh

µν∂λhµν −
1

4
∂λh

µ
µ∂

λhνν . (10.73)

the weak field action effectively becomes

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
(10.74)

Why is this addition justified? Recall in the subsection Gauge Invariance: A
Photon Can Find No Rest where we introduced the Faddeev-Popov trick, we
find that by adding (∂A)2 to the Lagrangian we were able to replace the original
action by a new action whose Lagrangian contains has a differential operator
with an inverse. We are doing a similar thing here.

But of course we can’t just add whatever we want to the Lagrangian and
expect it to describe the same physics. One way to keep the Lagrangian the
same is to require whatever we are adding to be zero. In our case, the freedom
in choosing hµν makes this a necessary condition, which means

∂µhµν −
1

2
∂νh

λ
λ = 0 ⇐⇒ ∂µhµν =

1

2
∂νh

λ
λ (10.75)

This is called the harmonic gauge condition. It turns out that this is the
linearized version of

∂µ
(√
−ggµν

)
= 0. (10.76)
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With these results, we can write the action as

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
=

1

32πG

ˆ
d4x

[
hµνKµν;λσ(−∂2)hλσ +O(h3)

]
(10.77)

where

Kµν;λσ ≡
1

2
(ηµληνσ + ηµσηνλ − ηµνηλσ) (10.78)

where we regard λν and λσ as two indices. We can work backwards to check
writing the action in this form makes sense, but let’s not worry too much about
that for now.

Note that we are dealing with matrices acting in a linear space spanned by
symmetric two-index tensors. Thus, the identity matrix is actually

Iµν;λσ ≡
1

2
(ηµληνσ + ηµσηνσ). (10.79)

We can check that

Kµν;λσK
λσ

;ρω = Iµν;ρω, (10.80)

so that

K−1 = K, (10.81)

similar to how ηµν = ηµν . Thus in the harmonic gauge the graviton propagator
in flat spacetime, in momentum space, is given by (up to Newton’s constant)

Dµν;λσ(k) =
1

2

Kµν;λσ

k2 + iε
=

1

2

ηµληνσ + ηµσηνλ − ηµνηλσ
k2 + iε

(10.82)

where the final k2 comes from the ∂2 in the Lagrangian when moving to mo-
mentum space, as always.

So there is our graviton propagator, in the weak field limit.

Newton from Einstein

Suppose we want to find the equation of motion corresponding to the action
given above

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
. (10.83)
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To find the equation of motion for this theory we take the variational derivative
of Swfg with respect to hµν .

We will rely on xACT to do this. Assuming that the rest has been setup
correctly, we will just define the effective Lagrangian, vary it with respect to
hµν , and set everything to zero.

In [15]:= DefTensor[T[m, n], M4]

During evaluation of In [15]:= ** DefTensor: Defining tensor T[m,n].

In [16]:= DefConstantSymbol[G]

During evaluation of In [16]:= ** DefConstantSymbol: Defining constant symbol G.

In [19]:= LagEff := (1/
2)*( (1/(32* Pi*G))*(CD[-l][h[LI[1], m, n]]*
CD[l][h[LI[1], -m, -n]] - (1/2)* CD[-l][h[LI[1], a, -a]]*
CD[l][h[LI[1], b, -b]]) - h[LI[1], -m, -n]*T[m, n] )

In [20]:= LagEff

Out [20]= 1/2 (- h[
xAct ‘xTensor ‘LI[1], -m, -n] T[m, n] + ( -(1/2) CD[-l][
h[
xAct ‘xTensor ‘LI[1], a, -a]] CD[l][
h[
xAct ‘xTensor ‘LI[1], b, -b]] + CD[-l][
h[
xAct ‘xTensor ‘LI[1], m, n]] CD[l][
h[
xAct ‘xTensor ‘LI[1], -m, -n]])/(32 G \[Pi]))

In [23]:= (VarD[h[LI[1], c, d], CD][ LagEff*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) == 0 /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

We quickly find Since the stress-energy tensor is symmetric, we can combine

Tcd and Tdc in the output to get the Euler-Lagrange equation of motion:

1

32πG
(−2�hµν + ηµν�h)− Tµν = 0 (10.84)
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Easy! Contracting this (i.e., taking the trace):

ηµν

[
1

32πG
(−2�hµν + ηµν�h)− Tµν

]
=

1

32πG
(−2�h+ 4�h)− T

=
1

16πG
�h− T

= 0. (10.85)

Therefore

�h = 16πGT = 16πGηµνTµν . (10.86)

And so plugging things back into the Euler-Lagrange equation we can find

�hµν = −16πG

(
Tµν −

1

2
ηµνT

)
(10.87)

In the static limit, T00 is the dominant component of the stress-energy tensor,
and so this equality reduces to

∇2φ = 4πGT00 (10.88)

where the Newtonian gravitational potential is φ ≡ h00/2. We have just derived
Poisson’s equation for φ.
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10.3 Massive Gravity

10.3.1 A Brief History

Massive gravity has a long-winded history. In 1939, Fierz-Pauli wrote down a
linearized massive gravity theory for massive spin-2 field hµν . (j = 2,mj =
−2,−1, 0, 1, 2).

Later in 1970, van Dam, Veltman, and Zakharov (vDVZ) discovered what
called the vDVZ discontinuity. They showed that in the m → 0 limit, Fierz-
Pauli theory no longer agrees with GR.

Then, in 1872 Vainshtein studied non-linear Fierz-Pauli and found a screen-
ing mechanism where near some object like the sun for r < rV ∼ (M/m4M2

Pl)
1/5 =

Λ5 agreement with GR is obtained in the m→ 0 limit.

In the same year, however, Boulware & Desen showed that in the nonlinear
regime, a ghost mode emerges (BD ghost).

In 2003, Arkani-Hamed et al wrote a expository paper on this theory. We
will spend some time on this paper.

Then, in 2010, de Rham-Gabadadze-Tolley (dRGT) found that for a special
non-linear potential in place of the Fierz-Pauli mass term the DB ghost goes
away. This new theory is valid up to Λ5 cutoff scale. This theory also has
self-accelerating solutions. This implies less need for dark energy.

https://arxiv.org/pdf/hep-th/0210184.pdf
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10.3.2 Quick review of Field Dimensions

Here we will quickly go over basic field dimensions. We first establish the natural
units: ~ = c = 1. With this E ∼ m ∼ p ∼ ω GeV. x ∼ t ∼ 1/E. We will use
mass dimension m as units. With this.

[x] = [t] = [K]−1 = m−1. (10.89)

The action looks something like

S =

ˆ
d4x dtL. (10.90)

S has units of ~ = J · s, so S has no units. So

[S] = [K]0 = m0. (10.91)

We can figure out field dimensions from S. Relativistically,

S =

ˆ
d4xL. (10.92)

The action is dimensionless, while [d4x] = [K]−4. So

[L] = [K]4. (10.93)

Now suppose for the scalar field theory

L = ∂φ∂φ (10.94)

schematically. Then because [∂] = [t]−1 = [x]−1 = [K], we find that

[φ] = [K]. (10.95)

So, scalars have mass dimension of 1.

Next, we look at vector field theory with

L ∼ FµνFµν (10.96)

where

Fµν = ∂µAν − ∂νAµ. (10.97)

Since [L] = [K]4 and [∂] = [K], we find

[Aµ] = [K]. (10.98)

So vector fields also have mass dimension 1. What about a mass term? Suppose

L =
1

2
∂µφ∂6µφ− 1

2
m2φ2. (10.99)
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We see that [m] = [K] = m is consistent with [φ] = m and [L] = [K]4 = m4.

What about gravity? What is the dimension of the metric? Well, we look
at

ds2 = gµνdX
µdXν . (10.100)

There are two units of length on both sides of the equation so

[gµν ] = [K]0, (10.101)

i.e. assuming Cartesian coordinates, the metric is dimensionless. What about
the connections? Christoffel symbols have the form

Γ ∼ g∂g. (10.102)

So

[Γ] = [∂] = [K]. (10.103)

Riemann curvature tensors look like

Rabcd ∼ Γ2 + ∂Γ + . . . (10.104)

so

[Rabcd] = [K]2. (10.105)

So we find that

[Lgrav] = [Rµµ] 6= [K]4. (10.106)

It turns out that

[L] ∼ 1

16πG
[R] = [K]4. (10.107)

This means

[G] = [K]−2. (10.108)

This says the Newton’s gravitational constant G has mass−2 units. With this
we can define

G ≡ 1

m2
Pl

, (10.109)

where mPl is the Planck mass. In GeV units, mPl ∼ 1019 GeV, which is very
large, making G very small.

Lastly, we notice that gravity has a dimensional constant in its kinetic term,
while other fields do not. This makes quantizing/renormalizing gravity difficult.
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10.3.3 Fierz-Pauli Massive Gravity

This section focuses on various aspects of Fierz-Pauli massive gravity. The
content is based on this paper by Kurt Hinterbichler. This is my exposition of
part II. of the paper, which gives an overview of the original Fierz-Pauli massive
gravity. I will follow the paper’s layout through and fill in the details wherever
I feel necessary.

The Action & Fierz-Pauli Tuning

Recall from earlier we have worked both ways to show the action in linearized
gravity (without Tµν) up to some overall constant factor is:

SZee =

ˆ
dDx

1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νhµν .

(10.110)

This is the action obtained from Zee’s construction. But to stay close this paper,
I will use Sean Carroll’s action instead:

SSC =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh.

(10.111)

This action is exactly the same as what Carroll has, up to index permutations.

We are familiar with this action, as it describes the (well-known by now)
weak field limit. The Fierz-Pauli action is just this with an additional mass
term:

ˆ
dDx − 1

2
m2
(
hµνh

µν − h2
)

(10.112)

hence the name “massive gravity.” The full action, then, is

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(10.113)

We wish to show that this action describes a massive spin 2 field (5 d.o.f = 2s+1).
In the m = 0 case, we recover the linearized Einstein-Hilbert action with the
gauge symmetry:

δhµν = ∂µεν + ∂νεµ (10.114)

https://arxiv.org/abs/1105.3735
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where once again

δhµν = h′µν − hµν . (10.115)

We have actually seen how the action can be constructed from this gauge sym-
metry.

With m 6= 0, however, the gauge symmetry is violated. It is clear that

δ

[
1

2
m2
(
hµνhµν + h2

)]
=

1

2
m2
[
(∂µεν + ∂νεµ)hµν + hµν(∂µεν + ∂νεµ)− δh2

]
=

1

2
m2
[
2(∂µεν + ∂νεµ)hµν − δ(hµµhνν)

]
=

1

2
m2
[
4(∂µεν)hµν − ηµaηνbδ(hµahνb)

]
=

1

2
m2
[
4(∂µεν)hµν − ηµaηνb {2(∂µεa)hνb + 2(∂νεb)h

µa}
]

=
1

2
m2 [4(∂µεν)hµν − 4(∂µεµ)h]

= 2m2[(∂µεν)hµν − (∂µεµ)h], (10.116)

which is linearly independent with other terms in the variational Lagrangian
δL. This says that

δL = 0 ⇐⇒ m2 = 0. (10.117)

But obviously since we explicitly set m 6= 0, we must have that δL 6= 0 under
δhµν = ∂µεν + ∂νεµ. So we say the mass term violates this gauge symmetry.

The relative coefficient −1 between h2 and hµνh
µν contractions is called

the Fierz-Pauli tuning. This number is not enforced by any known symmetry.
However, any deviation from it, i.e., for any combination

hµνh
µν − (1− a)h2, a 6= 0 (10.118)

results in the action describing a scalar ghost with mass

m2
g = −3− 4a

2a
m2 (10.119)

and negative kinetic energy in addition to the massive spin 2. We shall show
why this is the case with a 2-step argument partially inspired by A. Nicolis from
ICTP. In Step 1, we show that the Fierz-Pauli tuning has to be −1 to avoid
ghosts. In Step 2, we argue how the ghost of m2

g is obtained when a 6= 0 by a
Hamiltonian analysis, inspired by Kurt Hinterbichler and Greg Seyfarth.

http://indico.ictp.it/event/a11178/session/6/contribution/3/material/0/0.pdf
https://arxiv.org/pdf/1105.3735.pdf
https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1721&context=honorstheses
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Step 1: To this end, we consider the action (without matter, i.e., Tµν = 0)
of the form

S =

ˆ
dDx

[
Lm=0,linear −

1

2
m2(hµνh

µν − (1− a)h2)

]
(10.120)

The linearized equations of motion follow from varying the action with re-
spect to hµν . The linearized Lagrangian gives the Einstein tensor (without
matter) Gµν , while the massive terms gives

δ

δhµν

{
1

2
m2
(
hµνh

µν − (1− a)h2
)}

=
1

2
m2 (hµν − (1− a)hηµνhµν)

=
1

2
m2 (hµν − (1− a)ηµνh) . (10.121)

Covariantly, (to match the lower indices of Gµν), this is

−1

2
m2 (hµν − (1− a)ηµνh) . (10.122)

So the equation of motion reads

Gµν,linear +
1

2
m2 (hµν − (1− a)ηµνh) = 0 (10.123)

(Notice that we have made no assumptions about δhµν , i.e., we are not assuming
the gauge symmetry δhµν = ∂µεν + ∂νεnu is satisfied. In fact, we just showed
that this theory violates this gauge symmetry.)

It is instructive then to compare this equation of motion to what we would
have for a massive spin-1 field Aµ:

∂µF
µν +m2Aν = Jν . (10.124)

where

Fµν ≡ ∂µAν − ∂νAµ (10.125)

and Jµ is the current. A massive spin-1 particle has 2s + 1 = 2 + 1 = 3
degrees of freedom, which should show up in the Jµ = 0 equation of motion
as three wave solutions with independent polarizations. But we note that Aµ

has 4 components - one too many. However, because ∂ν∂µF
µν = 0 due to the

anti-symmetry of Fµν (we can verify this just by inspection), if Jµ = 0 =⇒
∂µJ

µ = 0 then we must have

m2∂µA
µ = 0 ⇐⇒ ∂µA

µ = 0 if m2 6= 0. (10.126)

The divergence of Aµ being zero is a gauge fix which adds an extra constraint
on Aµ, hence eliminating the fourth degree of freedom.
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Back to the massive gravity case. A massive spin-2 particle has 2s + 1 =
2×2 + 1 = 5 degrees of freedom. Now, because hµν is a 4×4 symmetric tensor,
there are 10 independent components. However, when there is no matter, i.e.,
Tµν = 0, we actually have a gauge fix which obeys:

Gµν +
1

2
m2 (hµν − (1− a)ηµνh) = 0

=⇒ ∂µ
{
Gµν +

1

2
m2 (hµν − (1− a)ηµνh)

}
= 0. (10.127)

But because the Einstein tensor Gµν is divergenceless in the absence of a source,
i.e.,

∂µGµν = 0, (10.128)

which follows from Bianchi identities involving the Ricci tensor and scalar. Of
course for the worrisome reader a quick check doesn’t hurt:

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

CD[c][( VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]])] /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric //
ToCanonical // Simplification

So yes ∂µGµν is in fact identically zero. Thus, we must have that

∂µ
{

1

2
m2 (hµν − (1− a)ηµνh)

}
= 0 ⇐⇒ ∂µhµν − (1− a)ηµν∂

µh = 0

(10.129)

Next, just like how we can write

Aµ ∼ ξµeik·x (10.130)
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for the wave solution to the spin-1 field where ξµ is the polarization vector, let
us write

hµν ∼ ξµνeik·x (10.131)

where ξµν is the graviton’s polarization tensor. With this we have

ξµνk
µ − (1− a)ξµµkν = 0 (10.132)

This is four equations for ν = 0, 1, 2, 3 which brings the number of degrees of
freedom down from 10 to 10− 4 = 6 degrees of freedom. There is now one too
many. How do we get rid of this? The answer lies in the factor (1− a) and the
contraction of Gµν .

Recall from (??) that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
,

(10.133)

which we have found by varying Llinear in xACT with respect to hµν . We wish
to contract Gµν , with xACT as well:

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

\[Eta][c,
d] (VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

This reads nicely as

G = ηµνGµν = ∂µ∂νh
µν −�h (10.134)
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From the gauge fix in (10.127), we must have that

G = ηµνGµν = −1

2
m2ηµν [hµν − (1− a)ηµνh]

= −1

2
m2[h− 4(1− a)h]

=
1

2
m2(3− 4a)h (10.135)

If we choose a = 0, then it follows from this equality that

G =
1

2
m2h (10.136)

and from (10.129) that

∂µhµν − ∂νh = 0 =⇒ ∂µ∂νh
µν −�h = 0. (10.137)

But these combined give us h = 0 ⇐⇒ hµµ ⇐⇒ ξµµ = 0. Aha! With the
trace of ξµν being zero, the number of polarizations is now 6−1 = 5, as desired.
This choice of the Fierz-Pauli tuning is now justified.

Step 2. Here we will show that when a 6= 0, the theory describes a massive
spin 2 and and a ghost scalar field with

m2
g = −3− 4a

2a
m2. (10.138)

Let us first show the motivation for defining the ghost scalar mass in this fashion.
We have that (10.129) reads

∂µhµν − (1− a)ηµν∂
µh = 0. (10.139)

We wish to establish a relationship between �h and ∂µ∂νhµν for reasons we
will see later. This means we should take ∂ν of the equation above. This gives

∂ν∂µhµν − (1− a)ηµν∂
ν∂µh = 0. (10.140)

But this equation simply screams

∂µ∂νh
µν − (1− a)�h = 0. (10.141)

Nice! Now, from (10.134) and (10.135) we also know that

∂µ∂νh
µν −�h = −1

2
m2(3− 4a)h. (10.142)

Therefore, we have from (10.142) and (10.141)

−1

2
m2(3− 4a)h+ �h = (1− a)�h. (10.143)
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This simplifies to

−1

2
m2(3− 4a)h = −a�h. (10.144)

This equation is now begging to be put into Klein-Gordon form:(
− 1

2a
m2(3− 4a) + �

)
h = 0 (10.145)

It only makes sense that we cast the mass term as m2
g. And whatever this theory

is, it is describing a massive scalar field with

m2
g = −3− 4a

2a
m2 (10.146)

Our next task is to show this is actually a ghost field. To this end, we invoke
Hamiltonian analysis of Fierz-Pauli massive gravity with the (1− a) coefficient.
We first cast the Lagrangian

L =− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(10.147)

into Hamiltonian form. We start by Legendre transforming this Lagrangian
only with respect to the spatial components of the perturbation metric, hij .
The canonical momenta are defined as

πij =
∂L
∂ḣij

≡ ∂L
∂(∂0hij)

(10.148)

where ∂ is just the regular partial derivative. To evaluate this, we can expand
out L in terms of µ = 0 objects and µ = i = 1, 2, 3 objects. If Greg Seyfarth is
correct, then (deep breath now):

L =
1

2
(hjk,0)2 + (h0k,j)

2 − 1

2
(hjk,l)

2 − (h0k,j)(h0j,k)− 2(h0j,k)(hjk,0)

+ (hkj,l)(hlj,k) + (h0k,k)(hjj,0)− 1

2
(hjj,0)(hkk,0)− (h00,l)(hjj,l)

+
1

2
(hjj,l)(hkk,l) + (h0j,j)(hkk,0) + (hjk,j)(h00,k)− (hjk,j)(hll,k)

− 1

2
m2
[
ah2

00 − 2h2
0j + h2

jk + 2(1− a)h00hll − (1− a)h2
ll

]
.

To get these square terms in the Lagrangian it is necessary to integrate by parts
and cancel like terms. I will not try to reproduce this since it is purely index
manipulation.

https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1721&context=honorstheses


10.3. MASSIVE GRAVITY 133

Varying this Lagrangian gives equations of motions. Varying with respect
to h00 gives

hjj,kk − hjk,jk − am2h00 −m2(1− a)hll − 0. (10.149)

Varying with respect to h0j gives

−h0j,kk + h0k,jk + hjk,0k − hkk,0j +m2h0j = 0. (10.150)

Varying with respect to hjk gives

0 = hjk,00 − hjk,ll − (h0j,0k + h0k,0j) + (hlk,lj + hlj,lk)

+ δjk(2h0l,0l − hll,00 − h00,ll + hmm,ll − hlm,lm)

+ h00,jk − hll,jk +m2hjk +m2(1− a)δjkh00 −m2(1− a)δjkhll. (10.151)

With this, the Hamiltonian is

H = πµνhµν,0 − L

=
1

2
(πjk)2 − 1

4
(πll)

2 + 2h0k,jπjk +
1

2
(hjk,l)

2

− hjk,lhlj,k + h00,lhkk,l −
1

2
hjj,lhkk,l − hjk,jh00,k + hjk,jhll,k

+
1

2
m2[ah2

00 − 2h2
0j + h2

jk + 2(1− a)h00hllh− (1− a)h2
ll].

After a number of substitutions that I won’t worry about too much here, the
final form of the Hamiltonian is given by

H =
1

2
(πjk)2 − 1

4
(πll)

2 +
1

2
(εijkhkl,j)

2 − 1

2
h2
jk,k +

1

2
h2
jj,l

+
1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk]

where εijk is the Levi-Civita symbol.

The terms in the square brackets correspond to the Fierz-Pauli mass term in
the original Lagrangian, while the rest of the terms come from the Lagrangian
that gives the original Einstein tensor. We are interested in the square bracket
terms when looking for ghosts in the theory.

When a = 0, the square bracket becomes

1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk]→ 1

2
m2[h2

ll + 2h2
0j + h2

jk]. (10.152)

This term is positive-definite, which is good. But what about the other terms
in the Hamiltonian? Well, we know that the rest of the Hamiltonian comes
directly from the Lagrangian without the massive term. We also know that this
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piece of the theory is very well-behaved since we have a number of equations of
motions and constraints to keep the degree of freedom correct. Thus, to see if
the current theory contains ghost it suffices to look only at the massive term’s
contribution to the Hamiltonian.

Since we have already seen how a = 0 gives a well-behaved theory. Let’s
now consider a 6= 0. When a 6= 0, the modified Klein-Gordon equation looks
like (

−3− 4a

2a
m2 + �

)
h = (� +m2

g)h = 0. (10.153)

Clearly the energy relation is

E2 − p2 = −m2
g, (10.154)

which has the wrong sign, i.e., the (ghostly) mass is imaginary. We might try
to remedy this problem by requiring that

3− 4a

2a
> 0 ⇐⇒ 0 < a <

3

4
. (10.155)

But this ensures that the coefficient of h2 in the term

1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk] (10.156)

is always negative, rendering the Hamiltonian non-positive-definite. We also
can’t constrain h in order to bring the degree of freedom down from 6 to 5.
This means that when a 6= 0 we have (1) an imaginary mass, (2) non-positive
definite Hamiltonian, and (3) and extra degree of freedom in the theory. This
creates a ghost mode in the theory.

With that we have showed how the tuning a = 0 is justified, and how a
massive scalar ghost mode appears (with negative kinetic energy) in the theory
when a 6= 0. As a little aside, when a 6= 0 and a is small, the mass m2

g goes like
∼ 1/a. This goes to infinity as the Fierz-Pauli tuning is approached, rendering
it non-dynamical.

Free solutions and Graviton mode functions

In this section we find the space of equations of motion, i.e. solutions to δS = 0.
We will then show that it transforms as a massive spin 2 representation of the
Lorentz group, i.e. showing that the action propagates precisely one massive
graviton (we will understand what this means later). To this end, we consider
the Fierz-Pauli action with the correct Fierz-Pauli tuning:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)
. (10.157)
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Setting δS = 0 ⇐⇒ δL/δhµν = 0, i.e., the variational derivative of the
integrand with respect to the inverse metric perturbation hµν is zero. We can
readily to this in xACT:

LagFP := -((CD[-m][h[LI[1], m, n]])*( CD[-n][
h[LI[1], -c, c]]) - (CD[-m][h[LI[1], c, d]])*( CD[-c][
h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]])) - (1/
2)*M^2*(h[LI[1], m, n]*
h[LI[1], -m, -n] - (1 - 0) h[LI[1], c, -c]*h[LI[1], d, -d])

(VarD[h[LI[1], c, d], CD][LagFP*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) == 0 /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

to get

which says

δL
δhµν

= �hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ + ∂µ∂νh− ηµν�h

−m2(hµν − ηµνh)

= 0. (10.158)

Okay, to get what constraints this equation gives us we first let ∂µ act on
this equation:

CD[c][( VarD[h[LI[1], c, d], CD][ LagFP*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]])] /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric //
ToCanonical // Simplification

Looking at this expression (which equals 0) for a while we can see that all terms
without the m2 factor cancel, which makes sense because ∂µGµν = 0 where Gµν
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is the Einstein tensor in the massless case. This expression then just simplify to

∂µhµν − ∂νh = 0 ⇐⇒ ∂µh
µν − ∂νh = 0 (10.159)

Plugging this back into the equation of motion, we find

0 = �hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ + ∂µ∂νh− ηµν�h−m2(hµν − ηµνh)

= �hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ηµν∂λ∂
λh+ ∂µ∂νh− ηµν�h−m2(hµν − ηµνh)

= �hµν − ∂µ∂νh− ∂ν∂µh+���
�ηµν�h + ∂µ∂νh−����ηµν�h −m2(hµν − ηµνh)

= �hµν − ∂µ∂νh−m2(hµν − ηµνh). (10.160)

So we have

�hµν − ∂µ∂νh−m2(hµν − ηµνh) = 0 (10.161)

Contracting we find that h = 0

0 = ηµν
(
�hµν − ∂µ∂νh−m2(hµν − ηµνh)

)
= �h−�h−m2(h− 4h) ⇐⇒ h = 0. (10.162)

But this just says

∂µhµν = ∂νh = 0 =⇒ (�−m2)hµν = 0. (10.163)

And so just to summarize, we have

(�−m2)hµν = 0; ∂µhµν = 0; h = 0 (10.164)

It turns out that these three equations and the original equation of motion
δL = 0 are equivalent statements. However, when put into this form (involving
three simple equations), degree-of-freedom-counting is much easier. For D = 4,
the first equation describe the evolution for a ten-component symmetric tensor
h. The second equation reduces 4 more d.o.f. The last equation sets the trace,
hence killing the last d.o.f, making hµν have only 5 d.o.f. In total, we are left with
the 5 real space d.o.f of a 4-dimensional spin 2 particle (5 = 2s+ 1 = 2× 2 + 1).

Next, we wish to solve for hµν firstly from the Klein-Gordon equation. This
turns out to be a reasonably easy differential equation whose general solution
has the form

hµν(x) =

ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]
(10.165)

Here p are the spatial momenta:

ωp =
√

p2 +m2, (10.166)
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and the D momenta pµ are on shell so that pµ = (ωp,p). We then express the
Fourier coefficients hµν(p) in terms of basis symmetric tensors indexed by λ:

hµν(p) = ap,λε̄
µν(p, λ) (10.167)

where

ε̄µν(p, λ) = Lµα(p)Lνβ(p)ε̄αβ(k, λ). (10.168)

Here Lµα(p) are boosts of the form

Lij(p) = δij +
1

|p|2
(γ − 1)pipj

Li0(p) = L0
i (p) =

pi

|p|
√
γ2 − 1

L0
0(p) = γ =

p0

m
=

√
|p|2 +

m2

m
(10.169)

such that the momentum k is taken from kµ = (m, 0, 0, 0) to p where pµ =
Lµα(p)kα. This stand boost choose for us the basis at p, relative to that at k.

With ∂µh
µν = (∂/∂xµ)hµν = 0 we have

0 = ∂µ

{ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]}

=

ˆ
ddp√

(2π)d2ωp

[
ipµh

µν(p)eipµx
µ

+ h.c.
]

=⇒ pµh
µν(p) = 0

=⇒ Lσµ(p)kσ (ap,λε̄
µν(p, λ)) = 0

=⇒ kσL
σ
µ(p)Lµα(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ kσδ
σ
α(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ kαL
ν
β(p)ε̄αβ(k, λ) = 0

=⇒ kαε̄
αβ(k, λ) = 0

=⇒ kµε̄
µν(k, λ) = 0 (10.170)

We also have the condition h = 0, which implies

0 = ηµν

ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]
=⇒ ηµνap,λε̄

µν(p, λ) = 0

=⇒ ηµνap,λL
µ
α(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ . . . (requires writing out when α = µ, β = ν, etc.)

=⇒ ηµν ε̄
µν(k, λ) = 0 (10.171)
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These two conditions imply that ε̄µν(k, λ) is purely spatial, i.e.

ε̄0µ(k, λ) = ε̄0µ(k, λ) = 0 (10.172)

i.e.,

[ε̄µν ] =


0 0 0 0
0 ε̄11 ε̄12 ε̄13

0 ε̄12 ε̄22 ε̄23

0 ε̄13 ε̄23 ε̄33

 (10.173)

and that ε̄µν(k, λ) is traceless, i.e.,

ε̄ii(k, λ) = 0 (10.174)

Hence, this basis is a collection of d(d+1)/2 symmetric, traceless spatial tensors
with index λ = 1, . . . , d(d+ 1)/2.

We demand further that this is an orthonormal basis:

ε̄µν(k, λ)ε̄∗µν(k, λ′) = δλλ′ (10.175)

(some things about group theory here... in order to make conditions work
for p and not k..., i.e.,

pµε
µν(p, λ) = 0; ηµνε

µν(p, λ) = 0 (10.176)

I will get back to this later)

In any case, the general solution hµν(x) can now be written in term of the
new p-dependent basis:

hµν(x) =

ˆ
ddp√

(2π)d2ωp

∑
λ

ap,λε
µν(p, λ)eip·x + a∗p,λε

∗µν(p, λ)e−ip·x (10.177)

The Propagator

There is a treatment of the F-P propagator in A. Zee’s book which I have re-
produced in one of sections in Gravity as Field Theory. But in any case, I will
reproduce the derivation here (plus some details) following Hinterbichler’s paper.

The recall the full Fierz-Pauli action:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(10.178)



10.3. MASSIVE GRAVITY 139

We wish to write this action in the form

S =

ˆ
dDx

1

2
hµνOµν,αβhαβ (10.179)

so as to resemble quantum field theory where the action appearing in the gen-
erating function

Z = ζ

ˆ
D[φ]ei

´
d4xL[φ] ∼ e

−i
2 JA

−1J ≡ e
−i
2

˜
d4xd4yJ(x)D(x−y)J(y) (10.180)

where J(·) is the source and D(x − y) ≡ A−1 is the propagator and A is the
original differential operator in the Lagrangian. By analogy, the graviton propa-
gator Dαβ,µν is defined to be the inverse of the second-order differential operator
Oµν,αβ . The goal of this section is to obtain an expression for Dαβ,µν .

We wish to turn SFP into the form involving Oµν,αβ where Oµν,αβ is some
operator. The comma here doesn’t mean (covariant) derivatives of any kind. It
is there just to remind us that µν and αβ can be treated as two (pair of) indices.
To write the action this way we are required to integrate the integrand of SFP
by parts so that every term in the resulting integrand looks like hµν♦µν,αβhαβ
where ♦µν,αβ is some operator. There are five terms so let’s hope things don’t
get out of hand (they don’t). The first term can be re-written as

ˆ
dDx

1

2

(
−∂λhµν∂λhµν

)
=

ˆ
dDx

1

2

(
hµν�η

µαηνβhαβ
)

=

ˆ
dDx

1

2

(
hµν�η

(µ
αη

ν)
βh

αβ
)

(10.181)

where the little brackets denote the symmetry in µ ↔ ν, meaning that we can
swap µ and ν as we please.

The second term is the trickiest:
ˆ
dDx

(
∂µhνλ∂

νhµλ
)

=

ˆ
dDx

(
−hνλ∂µ∂νhµλ

)
=

ˆ
dDx

(
−hµν∂α∂µηνβhαβ

)
=

ˆ
dDx

[
hµν

(
−∂µ∂αηνβ − ∂ν∂βηµα + ∂α∂βηµν

)
hαβ

]
=

ˆ
dDx

[
hµν

(
−2∂(µ∂(αην)β) + ∂α∂βηµν

)
hαβ

]
=

ˆ
dDx

[
hµν

(
−2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν
)
hαβ

]
,

(10.182)

where we’re treating µ and ν are one pair and α and β as another pair. The
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last three terms are quite easy:
ˆ
dDx (−∂µhµν∂νh) =

ˆ
dDx (hµν∂µ∂νh)

=

ˆ
dDx

(
hµν∂

µ∂νηαβhαβ
)

=

ˆ
dDx

(
hµν∂

µ∂νηαβh
αβ
)
. (10.183)

ˆ
dDx

1

2

(
∂λh∂

λh
)

=

ˆ
dDx

1

2

(
∂λh∂

λh
)

=

ˆ
dDx

1

2
(−h�h)

=

ˆ
dDx

1

2

(
−hµν�ηµνηαβhαβ

)
=

ˆ
dDx

1

2

(
−hµν�ηµνηαβhαβ

)
. (10.184)

ˆ
dDx − m2

2

(
hµνh

µν − h2
)

=

ˆ
dDx

−m2

2

(
hµνh

µν − h2
)

=

ˆ
dDx

−m2

2

[
hµν

(
ηµαηνβ − ηµνηαβ

)
hαβ

]
=

ˆ
dDx

−m2

2

[
hµν

(
ηµαηνβ − ηµνηαβ

)
hαβ

]
=

ˆ
dDx

−m2

2

[
hµν

(
η(µ

αη
ν)
β − η

µνηαβ

)
hαβ

]
.

(10.185)

Putting everything together we have

Oµναβ =
(
η(µ

αη
ν)
β − η

µνηαβ

)
(�−m2)− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

(10.186)

This operator O is a second order differential operator. By the symmetry in
the index-pairs: µν and αβ, we have the following property:

Oµν,αβ = Oνµ,αβ = Oµν,βα = Oνµ,βα. (10.187)

There’s nothing surprising about this. It is just a fact that might be useful later.

With this operator, the equation of motion can now be written succinctly as

δL
δhµν

= Oµν,αβhαβ = 0 (10.188)
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Recall in QFT where the propagator D is defined as the inverse of the differ-
ential operator A, we do the same thing here and define the propagator Dαβ,σλ
as the inverse of Oµν,αβ :

Oµν,αβDαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδ

µ
λ) (10.189)

which obeys the same index symmetries as O.

To derive an expression for D, we first write O in momentum space:

Oµναβ(∂ → ip) =−
(
η(µ

αη
ν)
β − η

µνηαβ

)
(p2 +m2)

+ 2p(µp(αη
ν)
β) − pαpβη

µν − pµpνηαβ (10.190)

where ∂ → ip denotes replacing ∂ by ip when we go to momentum space.

Upon inspection, we can solve for D and find

Dαβ,σλ =
−i

p2 +m2

[
1

2
(PασPβλ + PαλPβσ)− 1

D − 1
PαβPσλ

]
(10.191)

where

Pαβ = ηαβ +
pαpβ
m2

. (10.192)

I won’t into the details about how we can obtain this. I will just say that we
can readily verify that D is indeed the inverse of the O, in momentum space.

When the momentum is large, the propagator behaves as ∼ p2/m4 (rather
than 1/p2 in the meson theory, say), and so we can’t verify if the theory is
renormalizable or not using the conventional power counting method. We will
see later how to overcome this difficulty by rewriting the theory in a way in
which all propagators go similar to ∼ 1/p2 at high energy.

We might learn something from comparing this propagator to the propagator
in the m = 0 case. In the m = 0 case, the action can be written as

Sm=0 =

ˆ
dDx

1

2
hµνEµν,αβhαβ (10.193)

where now the differential operator E is just the operator O evaluated at m = 0:

Eµναβ = Oµναβ(m = 0)

=
(
η(µ

αη
ν)
β − η

µνηαβ

)
�− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

(10.194)
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This propagator also inherits the usual index symmetry: µ ↔ ν and α ↔ β.
Letting E act on some symmetric tensor Zαβ we find

Eµν,αβZαβ = EµναβZ
αβ

=
{(
η(µ

αη
ν)
β − η

µνηαβ

)
�− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

}
Zαβ

= �Zµν − ηµν�Z − 2∂(µ∂(αη
ν)
β)Z

αβ + ∂µ∂νZ + ηµν∂α∂βZ
αβ

= �Zµν − ηµν�Z − 2∂(µ∂αZ
ν)α + ∂µ∂νZ + ηµν∂α∂βZ

αβ .
(10.195)

Now, recall that the m = 0 action has the gauge symmetry

δhµν = ∂µεν + ∂νεµ (10.196)

which is broken when m 6= 0, which implies that the operator E is not invertible
(has non-trivial kernel, i.e. there are distinct solutions to the same problem).
In order to find the propagator (of equivalently the inverse of the differential
operator), we must impose a gauge. We in fact have seen this gauge before
in Zee’s and Sean Carroll’s treatment of massive gravity. The necessary gauge
condition is called the harmonic gauge or de Donder gauge or Lorenz gauge:

∂µhµν −
1

2
∂νh = 0. (10.197)

We also know that in this gauge the equation of motion reads

�hµν −
1

2
ηµν�h = 0. (10.198)

The Lagrangian associated with this gauge condition has an additive gauge-
fixing term

LGF = −
(
∂νhµν −

1

2
∂µh

)2

, (10.199)

which we also have seen in Zee’s treatment. This term actually follows from the
Faddeev-Popov gauge fixing process, but I won’t go into too much detail here
(for reference, please refer to Gravity as a Field Theory in one of the earlier
sections).

When we write the gauge-fixed action as

S =

ˆ
dDx (L+ LGF ) =

ˆ
dDx

1

2
hµνÕµν,αβhαβ (10.200)

where, from our results in Gravity and Beyond

L+ LGF = −1

2
∂λh

µν∂λhµν +
1

4
∂λh

µ
µ∂

λhνν

=
1

2
hµν�h

µν − 1

4
h�h (10.201)
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where some slight discrepancies in the signs of the Lagrangian here and in the
earlier sections arise due to whether we vary L with respect to hµν or hµν (proof:
a quick check in xACT). The second inequality is obtained from integrating the
first line by parts (hence the minus signs).

With this, the new differential operator is (compare this to what we found
earlier and see that they match!)

Õµν,αβ = �

[
ηµαηνβ + ηµβηνα − ηµνηαβ

2

]
(10.202)

Going to momentum space and requiring

Õµν,αβDαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδµλ) , (10.203)

i.e., that D is the inverse of the Õ, we find (once again we can check with Gravity
and Beyond to see these results match up to a factor of i or a minus sign due
to the identity convention):

Dαβ,σλ =
−i
p2

[
1

2
(ηασηβλ + ηαληβσ)− 1

D − 2
ηαβησλ

]
(10.204)

Notice that this propagator grows as ∼ 1/p2 for high energy, which is good,
except this is the massless case. Comparing this result to the massive propaga-
tor, and ignoring terms that blow up when m → 0, we observe a difference in
the coefficient of the last term, even as m → 0. When D = 4, it is 1/2 for the
massless case and 1/3 for the massive case:

1

D − 1
→ 1

4− 1
=

1

3
massive

1

D − 2
→ 1

4− 2
=

1

2
massless (10.205)

This is the first hint of the vDVZ discontinuity (and various other problems
that arise later).
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10.3.4 Fierz-Pauli Massive Gravity with Source

General solution to the sourced equations

In this section we introduce a source into the action and repeat what we did in
the source-free case: writing down the action, finding the equation of motion
and the constraints described by it.

First, we add a fixed external symmetric source Tµν to the action:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν

where

κ = M
−(D−2)/2
P (10.206)

is the coupling strength to the source, chosen in accord with the general rela-
tivity definition Tµν = (2/

√
−g)δL/δgµν as well as the normalization δgµν =

2κhµν .

The equation of motion now becomes (upon varying L with respect to hµν
and setting the variational derivative to zero):

−κTµν =�hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ

+ ∂µ∂νh− ηµν�h−m2 (hµν − ηµνh) (10.207)

When m = 0, in which case we must have the conservation condition

∂µTµν = 0 (10.208)

since ∂µ acting on the right-hand side when m = 0 gives zero. When m 6= 0,
however, ∂µTµν 6= 0. In fact, letting ∂µ act on the entire equation we find the
condition

∂µhµν − ∂νh =
κ

m2
∂µTµν (10.209)

whose left-hand side follows from earlier works. This is the equation of motion,
whose solution can be written as a sum of a particular solution and a homoge-
neous solution.

Plugging this back into the equation of motion we find

�hµν − ∂µ∂νh−m2 (hµν − ηµνh)

=− κTµν +
κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ − ηµν∂µ∂νTµν

]
(10.210)
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Contracting this gives

�h−�h−m2 (h−Dh) = −κT +
κ

m2
[T + T −D∂µ∂νTµν ] (10.211)

i.e.,

h = − κ

m2(D − 1)
T − κ

m4

D − 2

D − 1
∂µ∂νT

µν (10.212)

here D is the dimension of the space we are working with. I suppose we can
assume we’re working in 4-dimensional spacetime, so D can be set to 4, but not
necessarily. The term ∂µ∂νT

µν can be abbreviated as ∂∂T , denoting a double
divergence.

Plugging this h into (10.209) we find

∂µhµν = − κ

m2(D − 1)
∂νT +

κ

m2
∂µTµν −

κ

m4

D − 2

D − 1
∂ν∂∂T (10.213)

Finally, we want to know what (� − m2)hµν looks like. It turns out that (I
won’t go into the details here because it is relatively easy to find this):

(�−m2)hµν =− κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

T

)]
+

κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ

− 1

D − 1

(
ηµν + (D − 2)

∂µ∂ν
m2

)
∂∂T

]
(10.214)

These three boxed equations are the three constraints analogous to what we
have found before, except here a source is present. We can also see that, just
as before, these three equations combined is equivalent to the original equation
of motion.

We can go a bit further and contract the last condition to find

(�−m2)

(
h+

κ

m2(D − 1)
T +

κ

m4

D − 2

D − 1
∂∂T

)
︸ ︷︷ ︸

f

= 0. (10.215)

But of course the function f here is zero because of the first condition, so there’s
nothing new here. However, we can look at things differently and assume that

(�−m2)f = 0 =⇒ f = 0. (10.216)

Under this assumption the first condition is implied, and so is the second condi-
tion. With this, we may obtain solutions by Fourier transforming only the third
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boxed equation. Solutions can also be obtained by applying the propagator to
the Fourier transform of the source (since the propagator is in momentum space).

We are often interested in sources that are conserved, i.e., ∂µT
µν = 0. When

the source is conserved, and under the assumption (�−m2)f = 0 =⇒ f = 0,
we are left with a single equation:

(�−m2)hµν = −κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

)
T

]
(10.217)

The general solution for a conserved source is then

hµν(x) = κ

ˆ
dDp

(2π)D
eipx

1

p2 +m2

[
Tµν(p)− 1

D − 1

(
ηµν +

pµpν
m2

)
T (p)

]
(10.218)

where

Tµν(p) =

ˆ
dDxe−ipxTµν(x) (10.219)

is the inverse Fourier transform of the source.

Solution for a point source (m 6= 0)

We will now focus to D = 4 so that

κ = M
−(D−2)/2
P =

1

MP
. (10.220)

We consider as a source the stress tensor of a mass M point particle at rest at
the origin:

Tµν(x) = Mδµ0 δ
ν
0 δ

3(x) (10.221)

In momentum space this is

Tµν(p) = 2πMδµ0 δ
ν
0 δ(p

0) =⇒ T (p) = ηµνT
µν(p) = 2πMη00δ(p

0) (10.222)

upon taking the Fourier transform of the Tµν(x).

This source is conserved, by inspection. Using (10.218), we find (using the
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metric convention ηµν = (− + + +))

h00(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p′)− 1

3

(
η00 +

p2
0

m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p′)− 1

3

(
η00 +

p2
0

m2

)(
2πMη00δ(p

0′)
)]

=
M

MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2

δ(p0′)− 1

3

−1 +
p2

0

m2︸︷︷︸
1

 δ(p0′)


=

2M

3MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2
δ(p0)

=
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
. (10.223)

Thus we have

h00(x) =
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
(10.224)

We also have

h0i(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p)− 1

3

(
η0i +

p0pi
m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T0i(p)−

1

3

(p0pi
m2

)(
2πMη00δ(p

0′)
)]

=
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2
[0 + 0]

= 0 (10.225)

and so

h0i(x) = 0 (10.226)

And finally,

hij(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
Tij(p)−

1

3

(
ηij +

pipj
m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
0− 1

3

(
δij +

pipj
m2

)(
2πMη00δ(p

0′)
)]

=
M

3MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2

[(
δij +

pipj
m2

)
δ(p0′)

]
=

M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
. (10.227)
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So,

hij(x) =
M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
(10.228)

Recalling (??) in From field to particle, we have actually done the h00(x)
integral. So we will just write (by analogy)

h00(x) =
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
=

2M

3MP

1

4π

e−mr

r
(10.229)

which suggests going to spherical coordinates with r being the norm of the vec-
tor xi, i.e., r =

√
xixi, integrated from 0 to ∞.

To evaluate the hij(x) integral, we can differentiate under the integral sign
the integrand of h00(x) without respect to xi and xj to bring down pi and pj :

∂i∂j

(
eipαx

α 1

pβpβ +m2

)
= ∂i

[
ipje

ipαx
α 1

pβpβ +m2

]
= −pipjeip·x

1

p2 +m2
.

(10.230)

This, with r =
√
xαxα, givesˆ

d3p

(2π)3

eip·xpipj
p2 +m2

= −∂i∂j
ˆ

d3p

(2π)3
eip·x

1

p2 +m2

= −∂i∂j
1

4π

e−mr

r

= −∂i∂j
1

4π

e−m
√
xαxα

√
xαxα

= −∂i∂j
1

4π

e−m
√
ηαβxαxβ√

ηαβxαxβ

= −∂i

 1

4π

(
−e
−mr(mr + 1)

r2

)
∂j

√
ηαβxαxβ︸ ︷︷ ︸
xj/r


= −∂i

[
1

4π

(
−e
−mr(mr + 1)

r2

)
xj

r

]
= −∂i

[
1

4π

(
−e
−mr(mr + 1)

r3

)
xj
]

=
1

4π

[
−e−mr

(
m2r2 + 3mr + 3

)
r4

xi

r
xj +

e−mr(mr + 1)

r3
δij

]

=
1

4π

e−mr

r

 1

r2
(1 +mr)δij −

1

r4
(3 + 3mr +m2r2)xixj︸ ︷︷ ︸

♠ij


≡ 1

4π

e−mr

r

[
1

r2
(1 +mr)δij −♠ij

]
. (10.231)
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Thus we have

hij(x) =
M

3MP

{
δij

1

4π

e−mr

r

(
1 +

1

m2r2
(1 +mr)

)
− ♠ij
m2

}
=

M

3MP

{
δij

1

4π

e−mr

r

1 +mr +m2r2

m2r2
− ♠ij
m2

}
(10.232)

Putting these results into the expressions for h00, h0i, and hij we find

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj

]
We note the Yukawa suppression factors e−mr characteristic of a massive field.

Now that we have all the components of hµν , for future reference, we will
record these expressions in spherical coordinates for the spatial variables. Using
the identity:

[F (r)δij +G(r)xixj ] dx
idxj =

[
F (r) + r2G(r)

]
dr2 + F (r)r2 dΩ2 (10.233)

which can be readily verified using r =
√
ηαβxαxβ , we can rewrite the line

element in spherical coordinates as

hµν dx
µdxν = h00 dx

0dx0 + 0 + 0 + hij dx
idxj

=
2M

3MP

1

4π

e−mr

r︸ ︷︷ ︸
−B(r)

dt2

+
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

3 + 3mr +m2r2

m2r4
xixj

]
dxidxj

= −B(r) dt2 +
M

3MP

1

4π

e−mr

r

1 +mr +m2r2

m2r2︸ ︷︷ ︸
A(r)

δij dx
idxj

− M

3MP

1

4π

e−mr

r

1

m2r4
(3 + 3mr +m2r2)︸ ︷︷ ︸

G(r)

xixj dx
idxj

= −B(r) dt2 +
[
A(r) + r2G(r)

]
dr2 +A(r)r2 dΩ2

= −B(r) dt2− M

3MP

1

4π

e−mr

r

2(mr + 1)

m2r2︸ ︷︷ ︸
C(r)

dr2 +A(r)r2 dΩ2

= −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2. (10.234)
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To summarize: we have successfully written hµν(x) line element in spherical
coordinates hµν(x)→ hµν(r)

hµν dx
µdxν −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2 (10.235)

where

B(r) = − 2M

3MP

1

4π

e−mr

r

C(r) = − 2M

3MP

1

4π

e−mr

r

1 +mr

m2r2

A(r) =
M

3MP

1

4π

e−mr

r

1 +mr +m2r2

m2r2

When r � 1/m these expressions reduce to

B(r) = − 2M

3MP

1

4πr

C(r) = − 2M

3MP

1

4πm2r3

A(r) =
M

3MP

1

4πm2r3

Solution for a point source m = 0

For comparison, we compute the point source solution for the massless case as
well. We choose the Lorenz gauge (or harmonic gauge) as before

∂µhµν −
1

2
∂νh = 0, (10.236)

in which the equation of motion simplifies to

�hµν −
1

2
ηµν�h = −κTµν (10.237)

which can be easily obtained by taking into account for an addition source term
in equation (10.198). Contracting this equation gives

�h− D

2
�h = −κT =⇒ �h =

2

D − 2
κT (10.238)

which upon back-substitution gives

�hµν = −κ
[
Tµν −

1

D − 2
ηµνT

]
. (10.239)

With these, we can solve (10.237) by Fourier transforming (just as we did before
with the sourced solution with m = 0):

hµν(x) = κ

ˆ
dDp

(2π)D
eip·x

1

p2

[
Tµν(p)− 1

D − 2
ηµνT (p)

]
(10.240)
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where

Tµν(p) =

ˆ
dDx e−ip·xTµν(x) (10.241)

is the Fourier transform of the source. We can readily see this is a solution by
evaluating �hµν .

When D = 4 and Tµν(x) is a point source - a point particle of mass M at
the origin of the same form as before:

Tµν(x) = Mδµ0 δ
ν
0 δ

3(x) ⇐⇒ Tµν(p) = 2πMδµ0 δ
ν
0 δ(p

0), (10.242)

then the general solution we found (10.240) tells us that

h00(r) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
=

M

2MP

1

4πr

h0i(r) = 0

hij(r) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
δij =

M

2MP

1

4πr
δij .

For later reference, we record his result in spherical spatial coordinates as well.
Using the same identity

[F (r)δij +G(r)xixj ] dx
idxj =

[
F (r) + r2G(r)

]
dr2 + F (r)r2 dΩ2 (10.243)

to get spherical coordinates we find a metric of the form

hµν dx
µdxν = −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2 (10.244)

with

B(r) = − M

2MP

1

4πr

C(r) = +
M

2MP

1

4πr

A(r) = +
M

2MP

1

4πr

The procedure for obtaining this is exactly the same as we just did for the
m 6= 0 sourced equation, except things are much simpler because we don’t have
the xixj term to worry about. One can verify this just by inspection.

The vDVZ discontinuity emerges

In this section we introduce the vDVZ discontinuity which results from the
studying a solution to the point-source + mass gravity problem. A more de-
tailed treatment of the vDVZ discontinuity (including its origin) will be provided
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in later sections where we discuss the Stükelberg’s trick/formalism.

We wish to show how the vDVZ continuity comes about in the simple prob-
lem of massive gravity + a point source. To this end, we extract some physical
prediction from the point source solution. Let us assume we have a test particle
moving in this field, and that this test particle responds to hµν the same way
that a test particle in GR responds to the metric deviation δgµν = (2/MP )hµν .

Given hµν of the form

hµν = MP


−2φ(r)

−2ψ(r)
−2ψ(r)

−2ψ(r)

 (10.245)

i.e.,

h00/MP = −2φ(r)

hij/MP = −2ψ(r)δij

h0i/MP = 0 (10.246)

then the Newtonian potential experienced by the particle is given by φ(r). Why
is this true? We can refer back to the chapter on the weak field limit of GR
(in the GR notes) and find that following the definition of acceleration a ≡∇Φ
where Φ is the Newtonian potential,

a ∼ d2Xi

dτ2
=

(
dt

dτ

)2
d2Xi

dt2
∼ 1

2
ηiσ(∂σh00)

(
dt

dτ

)2

(10.247)

where we have naturally set c = 1 and using the fact that the geodesic equation
for light in this limit reads

0 =
d2Xµ

dτ2
+ Γµνσ

dXν

dτ

dXσ

dτ
∼ d2Xµ

dτ2
+ Γµ00

dX0

dτ

dX0

dτ
=
d2Xµ

dτ2
+ Γµ00

(
dt

dτ

)2

(10.248)

with

Γµ00 =
1

2
ηµσ (∂0hσ0 + ∂0hσ0 − ∂σh00) ∼ −1

2
ηµσ∂σh00. (10.249)

With this, we see that because

a ∼ 1

2
ηiσ(∂σh00) =

−1

2
δij(∂jh00) =

−1

2
∇h00 (10.250)

And so it makes sense that h00, or the function φ(r) in our example, is respon-
sible for the Newtonian potential.

https://huanqbui.com/LaTeX projects/HuanBui_GR/HuanBui_GR.pdf
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Furthermore, if

ψ(r) = γφ(r) (10.251)

where γ is called the parameterized post-Newtonian (PPN) parameter, then if

φ(r) =
−k
r
, (10.252)

resembling the inverse-square potential, then the angle for the bending of light
at impact parameter b around a heavy source is given by

α̂ =
2(1 + γ)GM

b
(10.253)

We shall verify, derive, and apply this result. We will first consider the massless
gravity case to derive the expression, then apply it to the massive case.

Verification & derivation of (10.253) for massless gravity: This derivation will
rely on Sean Carroll’s Chapter 7, Spacetime & Geometry. We have obtained
the general expression for hµν for massless gravity in the previous section. For
convenience, I will reproduce them here:

h00(x) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
=

M

2MP

1

4πr

h0i(x) = 0

hij(x) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
δij =

M

2MP

1

4πr
δij .

We can just read off φ(r) and ψ(r) from the expressions of hµν , using 1/M2
P =

16πG:

h00(r) =
M

2MP

1

4πr
=⇒ φ(r) =

−GM
r

hij(r) =
M

2MP

1

4πr
δij =⇒ ψ(r) =

−GM
r

(10.254)

So, γ = 1 and thus we expect the bending angle to be

α =
4GM

b
(10.255)

We wish to verify this. To this end, we revisit hµν , “formally”:

hµν =


−2φ(r)

−2φ(r)
−2φ(r)

−2φ(r)

 (10.256)
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Now consider the path of a photon (or any massless particle) through this ge-
ometry. We want to solve the perturbed geodesic equation for a null trajectory
xµ(λ). The geometry we consider is shown as follows:

Figure 10.1: A deflected geodesic xµ(λ), decomposed into a background geodesic
x(0)µ and a perturbation x(1)u. The deflection angle α̂ represents (minus) the
amount by which the wave vector rotates along the path. A single mass M with
impact parameter b is depicted, although the setup is more general.

It’s important to remember that we consider the metric perturbation as a
field defined on a flat background spacetime. With this, we can decompose the
geodesic into a background path plus a perturbation:

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) (10.257)

where of course x(0)µ(λ) is just the null (straight) path which solves the flat
background geodesic equation. We want to solve for x(1)µ(λ). To do this, we
assume that the potential φ is approximately constant along the background
and true geodesics, i.e., x(1)i∂iφ � φ. This is reasonable assumption, since
x(1)µ(λ) is necessarily small.

For convenience we denote the derivative of the vector of the background
path as kµ, and the derivative of the deviation vector as lµ:

kµ ≡ dx(0)µ

dλ
; lµ ≡ dx(1)µ

dλ
. (10.258)

The null path obeys the condition:

0 = gµν
dxµ

dλ

dxν

dλ

= (ηµν + hµν)
d
(
x(0)µ + x(1)µ

)
dλ

d
(
x(0)ν + x(1)ν

)
dλ

= (ηµν + hµν) (kµ + lµ)(kν + lν) (10.259)
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At zeroth order we only have

ηµνk
µkν = 0 =⇒

(
k0
)2

= ~k2 ≡ k2. (10.260)

This defines the constant k. At first order, we have

2ηµνk
µlν + hµνk

µkν = 0 =⇒ −kl0 +~l · ~k = 2k2φ(r) (10.261)

since
(
k0
)2

= ~k2 = k2. Now, we turn to the perturbed geodesic equation:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (10.262)

With ηµν = diag(− + + +), the relevant Christoffel symbols are

Γ0
0i = Γi00 = ∂iφ

Γijk = δjk∂iφ− δik∂jφ− δij∂kφ. (10.263)

The zeroth-order equation simple tells us that x(0)µ is a straight trajectory,
while at first-order we have

dlµ

dλ
= −Γµρσk

ρkσ (10.264)

When µ = 0, we have

dl0

dλ
= −2k(~k ·∇φ) (10.265)

while the spatial components read

d~l

dλ
= −2k2

(
∇− ~∇‖

)
φ

≡ −2k2~∇⊥φ = −2k2
(
∇φ− k−2(~k ·∇φ)~k

)
(10.266)

where ~∇⊥ denotes the gradient of φ along the deviation and ~∇‖ denotes the
gradient of φ along the path.
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Next, we notice that

l0 =

ˆ
dl0

dλ
dλ

= −2k

ˆ
(~k ·∇φ) dλ

= −2k

ˆ (
d~x(0)

dλ
·∇φ

)
dλ

= −2k

ˆ
∇φ · d~x(0)

= −2k

ˆ
∂xφ (x̂ · x̂) dx(0)

= −2kφ. (10.267)

We can fix the constant of integration by demanding that l0 ⇐⇒ φ = 0. It
follows from (10.261) that

~l · ~k = 2k2φ+ kl0

= 2k2φ− 2k2φ

= 0. (10.268)

Thus ~k ⊥ ~l, to first order. This makes intuitive sense if we think about it a little
bit.

Now, the deflection angle α̂ is the amount by which the original spatial
wave vector is deflected as it travels from a source to the observer. It is a
two-dimensional vector in the plane perpendicular to ~k (by figure) and hence is

(anti)-parallel to ~l. And by the figure, we can write

α̂ = −∆~l

k
, (10.269)

where the minus sign accounts for the fact that the deflection angle is measured
by an observer looking backward along the photon path. The rotation of the
wave vector ∆~l can be calculated using (10.266):

∆~l =

ˆ
d~l

dλ
dλ

= −2k2

ˆ
−2k2~∇⊥φdλ. (10.270)

And with s = kλ denoting the physical spatial distance traversed we have

α̂ = 2

ˆ
~∇⊥φds (10.271)
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We also have

φ(r) =
−GM
r

=⇒ φ(x) =
−GM√
x2 + b2

, (10.272)

and

~∇⊥φ =
d

db
φ(x)b̂ =

GM

(b2 + x2)3/2
~b. (10.273)

Putting everything together, followed by a change of variables, we get

α̂ = 2GMb

ˆ ∞
−∞

dx

(b2 + x2)3/2
=

4GM

b
=

2(1 + 1)GM

b
(10.274)

and so γ = 1 as desired. The integral from −∞ to ∞ assumes that both source
and observer are very far from the deflecting mass.

What if the form of hµν is

hµν =


−2φ(r)

−2γφ(r)
−2γφ(r)

−2γφ(r)

? (10.275)

It is not difficult in this case to recalculate the Christoffel symbols, again using
η = diag(− + + +) for consistency:

Γµ00 = ∂iφ

Γijk = γ (δjk∂iφ− δik∂jφ− δij∂kφ) . (10.276)

Repeating the procedure in the previous paragraphs we find from the null path
condition (10.259) at zeroth order

ηµνk
µkν = 0 =⇒ k2 = ~k2 =

(
k0
)2

(10.277)

and at first order, because
(
k0
)2

= ~k2 = k2,

2ηµνk
µlν + hµνk

µkν = 0 =⇒ −kl0 +~l · ~k = 2(1 + γ)k2φ(r). (10.278)

This factor of (1 + γ) will reappear when we find the spatial component d~l/dλ
since it is embedded in the new Christoffel symbol Γiµν (I know this must be
true, but I won’t verify...)

d~l

dλ
= −2(1 + γ)k2~∇⊥φ (10.279)
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From here and the rest of the procedure, this factor (1+γ) is carried throughout

(even to the part where we show ~l ⊥ ~k) and eventually end up in the final
integral:

α̂ = 2(1 + γ)GMb

ˆ ∞
−∞

dx

(b2 + x2)3/2
=

2(1 + γ)GM

b
(10.280)

So we’re done with the massless case.

Application of (10.253), massive gravity:
In the massive case, the metric hµν has the form

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj

]
which is not quite the right form to read off the Newtonian potential and light
bending. To simplify things, we notice that while the massive gravity action
is not gauge invariant, we assumed tat the coupling to the test particle is that
of GR, i.e., this coupling is gauge invariant. We can argue that we are free to
make a gauge transformation on the solution hµν , and there will be no effect on
the test particle. To simplify the metric above, i.e. hopefully making it more
“uniformly diagonal” we can go back to the general expression for hij

hij(x) =
M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
(10.281)

and notice that the term pipj/m
2 is pure gauge. This means under some gauge

transformation, we can ignore this term (why?). With this, our metric is equiv-
alent to the metric:

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r
(10.282)

In the small mass limit, this metric becomes

h00(r) =
2M

3MP

1

4πr

h0i(r) = 0

hij(r) =
M

3MP

1

4πr
δij
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which means when we read off the fields φ and ψ we find

h00(r) =
2M

3MP

1

4πr
=⇒ φ(r) = −4

3

GM

r

hij(r) =
M

3MP

1

4πr
δij =⇒ ψ(r) = −2

3

GM

r
(10.283)

for massive gravitons.

The Newtonian potential φ is larger then for the massless case. The PPN
parameter is

γ =
ψ(r)

φ(r)
=

1

2
(10.284)

and thus the magnitude of the light bending angle for light incident at impact
parameter b is reduced by 25%:

α̂ =
2(1 + 1/2)GM

b
=

3GM

b
6= 4GM

b
(10.285)

when we scale φ so that it matches with the Newtonian potential, even in the
massless limit (note that this formula is obtained from the massless theory, so
we can only use it here in the massless limit).

What this all means is that linearized massive gravity, even in the massless
limit, gives predictions which are order 1 different from linearized GR. This is
the vDVZ discontinuity. It is present in other physical predictions as well, such
as emission of gravitational radiation. Sean Carroll’s Chapter 7,Spacetime &
Geometry goes over how to derive gravitation radiation (gravitational wave),
but we won’t worry about that.



160 PART 10. LINEARIZED GRAVITY

10.3.5 The Stückelberg Trick

There are a number of ways the Stückelberg trick has appeared in literature.
Some refer to it as an approach or trick. Some don’t even refer to it at all. In
this section, we look at some approaches to introducing and using the Stükelberg
trick in the context of massive gravity.

We have seen that there is a discontinuity in the physical prediction of linear
massless gravity and the massless limit of linear massive gravity, known as the
vDVZ discontinuity. We will see explicitly that the correct massless limit of
massive gravity is not massless gravity, but rather massless gravity plus extra
degrees of freedom. The extra degrees of freedom are a massless vector and
a massless scalar, which couples to the trace of the energy momentum tensor.
This extra scalar coupling is responsible for the vVDZ discontinuity.

Recall the Lagrangian:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν

Taking the m → 0 straight away here does not yield a smooth limit, since
degrees of freedom are lost. To find the correct limit, the trick is to introduce
new fields and gauge symmetries into the massive theory in a way that does not
alter the theory. This is called the Stückelberg trick. Once this is done, a limit
can be found in which no degrees of freedom are gained or lost.

Motivation

The goal of the Stükelberg trick is to make a massive theory gauge invariant.
As we have seen, the massive term in the Fierz-Pauli action breaks diffeomor-
phism. The Stükelberg mechanism is the introduction of new field(s) to a reveal
a symmetry of a gauge-fixed theory.

In general, dynamical tensors Kµν transform under diffeomorphisms as

Kµν → Kµν + L3Kµν

= Kµν + (∂µε
α)Kαν + (∂νε

α)Kµα + εα∂αKµν . (10.286)

However, nondynamical background K̄µν obeys

K̄µν → K̄µν . (10.287)

In the context of massive gravity, in the nonlinear regime, we want to couple
a mass to gµν . But we also want to avoid gµνgµν = 4, so we must introduce a
nondynamical background K̄µν such that the mass terms become ∼ (K̄µνgµν)2,
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which break diffeomorphism.

Stükelberg’s trick puts back diffeomorphism invariance while introducing 4
scalars φa, a = 0, 1, 2, 3 such that we gain/lose no degree of freedom. To do this,
we can replace

K̄µν(x)→ ∂µφ
a∂νφ

bK̄ab(φ(x)). (10.288)

Here φa is a dynamical scalar with which we can restore diffeomorphism in-
variance in the theory. (We will see later why we would like to make this
replacement/definition.)

How is diffeomorphism restored? Well first we can fix

φa = δaαx
α, (10.289)

where xα is literally just the coordinate, such that

∂µφ
a = δaαδ

α
µ = δaµ. (10.290)

So we have

∂µφ
a∂νφ

bK̄ab(φ) = δaµδ
b
νK̄ab

= K̄µν(x). (10.291)

So we see this choice of gauge fixing gives the desired transformation. Next,
suppose we look at excitations of the form

φa = δaα(xα + πα) (10.292)

where πα are fields that are like th Nambu-Goldstone modes, then

∂µφ
a = δaµ + ∂µπ

αδaα

= δaµ + ∂µπ
a. (10.293)

With this,

∂µφ
a∂νφ

bK̄ab = (δaµ + ∂µπ
a)(δbν + ∂νπ

b)K̄ab(x+ π)

≈ (δaµ + ∂µπ
a)(δbν + ∂νπ

b)(K̄ab + πα∂αKab(x) + . . . )

≈ K̄µν + (∂µπ
a)K̄aν + (∂νπ

b)K̄µb + πα∂αK̄µν + . . . (10.294)

up to first order in π. The first approximation is just an affine approximation of
K̄ab. This puts the Nambu-Goldstone modes back into the theory with explicit
breaking, when πµ are like Nambu-Goldstone modes. This turns out to have
local symmetry. We can always gauge fix so that ∂µ → 0 and get back the
original theory.

A lot of this seems very arbitrary and sort of “out-of-nowhere.” But rest
assured, as we will see what we are actually doing by introducing φa and how
this trick works in the next section.
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The Stückelberg’s Trick - a Vector Example (Hinterbichler)

To see how the trick works, we consider a simple case of the theory of a massive
photon Aµ coupled to a (not necessarily conserved) source Jµ:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ. (10.295)

where of course

Fµν = ∂µAν − ∂νAµ (10.296)

is the anti-symmetric EM stress-tensor. The mass term break the would-be
gauge invariance:

Aµ → Aµ + ∂µΛ ⇐⇒ δAµ = ∂µΛ, (10.297)

and for D = 4 this theory describes the 3 degrees of freedom of a massive spin
1 particle. The propagator for this theory is given by

−i
p2 +m2

(
ηµν +

pµpν
m2

)
(10.298)

which is not quite as nice as the usual massless photon propagator (Maxwell
theory) due to m 6= 0, and is similar to ∼ 1/m2 for large momenta. This prop-
erty invalidates the usual power-counting arguments.

The limit m → 0 of the Lagrangian above is not a smooth limit because
we lose a degree of freedom: for m = 0 we have Maxwell’s EM theory which
propagates only with 2 degrees of freedom. Also, the limit fails to exist unless
Jµ is conserved.

Here’s how the Stückelberg trick works. The trick consists of introducing
a new scalar field φ such tat the new action has gauge symmetry but is still
dynamically equivalent to the original action. It will give a different m → 0
smooth limit such that no degrees of freedom are gained or lost.

Let us begin by introducing a field φ by making the replacement:

Aµ → Aµ + ∂µφ (10.299)

following the pattern of the gauge symmetry we want to introduce. This is not
a change of field variables, a decomposition of Aµ, nor a gauge transformation
(remember, this new theory breaks gauge invariance). Rather, we are creating
a new Lagrangian from th old one, by the addition of a new field φ. Fµν is
invariant under this replacement because the replacement is similar to a gauge
transformation under which Fµν is invariant. The only thing that changes is
the mass term and the coupling to the source. Following some simple algebra,
the action becomes

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2 (Aµ + ∂µφ)

2
+AµJ

µ − φ∂µJµ (10.300)
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where we have integrated by parts in the coupling to the source. The new action
now has the gauge symmetry:

δAµ = ∂µΛ; δφ = −Λ. (10.301)

By fixing the gauge φ = 0, called the unitary gauge, we recover the original
Lagrangian:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ. (10.302)

This tells us that the action with φ = 0 and φ 6= 0 are equivalent theories. They
both describe the 3 d.o.f of a massive spin 1 in 4-dimensional spacetime. The
new Lagrangian just has more fields and symmetries. Pro tip: when introducing
new fields, make sure to introduce new symmetries so as to conserve degrees of
freedom.

The Stückelberg trick uses redundancy (introduces new fields as well as new
symmetries) to fix theories. The Stückelberg trick adds and removes extra gauge
symmetry in a way that does not mess with the manifest Lorentz invariance and
locality.

Now, consider the new theory again:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2 (Aµ + ∂µφ)

2
+AµJ

µ − φ∂µJµ. (10.303)

By normalizing φ→ m−1φ, we get

S =

ˆ
dDx

−1

4
FµνF

µν − m2

2
AµA

µ −mAµ∂µφ−
1

2
∂µφ∂

µφ+AµJ
µ − 1

m
φ∂µJ

µ.

(10.304)

The gauge symmetries after this normalization is:

δAµ = ∂µΛ; δφ = −mΛ. (10.305)

Now, consider the m→ 0 limit. If ∂µJ
µ 6= 0, i.e., the current is not conserved,

then when m � 1, the scalar field φ couples strongly with the divergence of
source, and the limit does not exist. This requires us to assume the current to
be conserved: ∂µJ

µ = 0. This implies the new theory in the m→ 0 limit is

L = −1

4
FµνF

µν − 1

2
∂µφ∂

µφ+AµJ
µ, (10.306)

endowed with the gauge symmetries (m = 0):

δAµ = ∂µΛ; δφ = 0. (10.307)
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The degrees of freedom turn out to be conserved in the limit. For D = 4 two of
the 3 degrees of freedom go into the massless vector,and one goes into the scalar.

We can fix a Lorentz-like gauge:

∂µA
µ +mφ = 0 (10.308)

which along with the gauge symmetries: δAµ = ∂µΛ; δφ = −mΛ satisfies
(�−m2)Λ = 0. From Fadeev-Popov, we add a this gauge fixing term (which is
zero) to the action to get

S + SGF = S +

ˆ
dDx − 1

2
(∂µA

µ +mφ)
2

= . . .

=

ˆ
dDx

1

2
Aµ(�−m2)Aµ +

1

2
φ(�−m2)φ+AµJ

µ − 1

m
φ∂µJ

µ

(10.309)

From there, we can pick out the propagators for Aµ and φ in momentum space
respectively:

DAµ(p) =
−iηµν
p2 +m2

; Dφ(p) =
−i

p2 +m2
(10.310)

These go as ∼ 1/p2 at high momenta. So, we are able to restore good high
energy behavior of the theory propagators.

Graviton Stückelberg’s Trick & The origin of the vDVZ discontinuity
(Hinterbichler)

Now, let us consider the massive gravity action, which is made up of the massless
piece, plus the mass term, plus the source coupling term:

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν (10.311)

We want to preserve (or restore(?)) the diffeomorphism:

δhµν = ∂µεν + ∂νεµ = ∂(µεν) (10.312)

present in the m = 0 case, so we introduce a Stückelberg field Aµ patterned
after the gauge transformation/symmetry:

hµν → hµν + ∂µAν + ∂νAµ (10.313)
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What does the action look like following this transformation? Some quick ma-
nipulations give

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
m2FµνF

µν

− 2m2 (hµν∂
µAν − h∂µAµ) + κhµνT

µν − 2κAµ∂νT
µν

where we notice that Lm=0 term is invariant under this transformation (since
it is the originally gauge-invariant Lagrangian). Other terms are not invari-
ant under the transformation above in hµν . We also note that we are setting
Fµν = ∂µAν − ∂µAν , and that we integrated the last term by parts to bring the
∂ inside to act on Tµν instead of on Aµ.

Just as before, we observe two gauge symmetries:

δhµν = ∂µεν + ∂νεµ; δAµ = −εµ. (10.314)

Fixing the gauge Aµ = 0 gives back the massive gravity action (without extra
fields, etc.). At this point, if we try to repeat what we did before: rescaling
Aµ → m−1Aµ, we will fail because when the m → 0 limit is taken, we end
up with a massless graviton and a massless photon for a total of 4 degrees of
freedom - one less than the desired value of 5.

Instead, we go further and introduce a Stückelberg field φ and consider the
transformation:

Aµ → Aµ + ∂µφ, (10.315)

under which the action above becomes:

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
m2FµνF

µν

− 2m2 (hµν∂
µAν − h∂µAµ)− 2m2 (hµν∂

µ∂νφ− h�φ)

+ κhµνT
µν − 2κAµ∂νT

µν + 2κφ∂∂T

where

∂∂T ≡ ∂µ∂νTµν . (10.316)

With the introduction of the scalar field φ, we must also include two more gauge
symmetries to the theory, giving 4 total gauge symmetries, which follow from
the redefinition (10.313) 

δhµν = ∂µεν + ∂νεµ

δAµ = −εµ
δAµ = ∂µΛ

δφ = −Λ.
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Once again, by fixing the gauge φ = 0 we get back the previous Lagrangian.

Now, we scale:

Aµ →
1

m
Aµ

φ→ 1

m2
φ. (10.317)

The action changes accordingly as

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
FµνF

µν

− 2m (hµν∂
µAν − h∂µAµ)− 2 (hµν∂

µ∂νφ− h�φ)

+ κhµνT
µν − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T,

and the gauge transformations become:
δhµν = ∂µεν + ∂νεµ

δAµ = −mεµ
δAµ = ∂µΛ

δφ = −mΛ.

which is quite obvious since we just rescaled things. Now, in the m → 0 limit,
we can see that Aµ and φ are strongly coupled to the divergence of the source ∂T
and ∂∂T . So suppose that the source T is conserved, in which case ∂µT

µν = 0,
then in this limit the theory takes the form

S =

ˆ
dDxLm=0 −

1

2
FµνF

µν − 2 (hµν∂
µ∂νφ− h�φ) + κhµνT

µν (10.318)

This theory has 5 degrees of freedom: a scalar-tensor vector theory where the
vector is completely decoupled (Aµ is completely contained and isolated in the
Fµν term) but the scalar is kinetically mixed with the tensor (the mixed term
is the one with hµν and φ).

To unmix the coupling between the tensor field hµν and the scalar field φ
we introduce a field definition:

hµν = h′µν + πηµν (10.319)

where π is some scalar field. Under this field substitution, the massless La-
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grangian becomes:

Lm=0(h) = −1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh

= . . .

= Lm=0(h′) + (D − 2)

[
∂µπ∂

µh′ − ∂µπ∂νh′µν +
1

2
(D − 1)∂µπ∂

µπ

]
.

(10.320)

Now, by setting

π =
2

D − 2
φ, (10.321)

we can unmix the h − φ coupling in the original Lagrangian. After some sim-
plifications, we obtain the new action following the field substitution:

S =

ˆ
dDxLm=0(h′)− 1

2
FµνF

µν − 2
D − 2

D − 1
∂µφ∂

µφ+ κh′µνT
µν +

2

D − 2
κφT

(10.322)

The gauge symmetries in this theory are
δh′µν = ∂µεν + ∂νεµ

δAµ = 0

δAµ = ∂µΛ

δφ = 0.

which follow from the field redefinition (10.319). With D = 4, there are 5
degrees of freedom: two in a canonical massless graviton, two in a canonical
massless vector, and one in a canonical massless scalar.

However, notice that there is still a coupling between the scalar φ and the
trace of the source T (even) in the m = 0 limit. This is the origin of the vDVZ
discontinuity. When we consider the trajectory of light, we set T = 0, so this
does not affect the bending of light. However, this extra scalar degree of freedom
affects the Newtonian potential. We actually have seen this earlier. To reconcile
the disagreement in the predicted bending angle of light α̂ ∼ 4GM/b 6= 3GM/b,
we will have to rescale the gravitational constant G which affects the Newtonian
potential.

In the m 6= 0 regime with not necessarily conserved source, under the field
redefinition:

hµν = h′µν +
2

D − 2
φηµν (10.323)
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which follows from setting π = 2φ/(D − 2), the full action is given by (ready?)

S =

ˆ
dDxLm=0(h′)− 1

2
m2
(
h′µνh

′µν − h′2
)
− 1

2
FµνF

µν

+ 2
D − 1

D − 2
φ

(
� +

D

D − 2
m2

)
φ− 2m

(
h′µν∂

µAν − h′∂µAµ
)

+ κh′µνT
µν

+ 2
D − 1

D − 2

(
m2h′φ+ 2mφ∂µA

µ
)

+
2

D − 2
κφT − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T.

(whose verification is left as an “index-swimming” exercise to the reader). This
theory has the following gauge symmetries:

δh′µν = ∂µεν + ∂νεµ + 2
D−2mΛηµν

δAµ = −mεµ
δAµ = ∂µΛ

δφ = −mΛ.

It looks like the gauge symmetries has drastically changed, but if we look care-
fully there is not much going on here. From the field redefinition we can see
how the first gauge symmetry is obtained:

hµν = h′µν +
2

D − 2
φηµν =⇒ δh′µν = δhµν −

2

D − 2
(δφ)ηµν

= ∂µεν + ∂νεµ −
2

D − 2
(δφ)ηµν

= ∂µεν + ∂νεµ +
2

D − 2
mΛηµν (10.324)

which follows from the fact that

δφ = −mΛ (10.325)

after defining Aµ → Aµ+∂µφ, and rescaling Aµ → (1/m)Aµ and φ→ (1/m2)φ.
In any case, these are minor details we don’t have to worry about too much.

Now, remember that in order to find the propagators for these fields (scalar
φ, vector Aµ, and tensor hµν), we must be able to invert the differential op-
erators that correspond to each field in the Lagrangian. Since there are gauge
symmetries, these differential operators don’t have trivial kernel (i.e. not invert-
ible). This requires some gauge-fixing to allow for operator inversion. There are
2 gauge conditions we would like to fix: one in Λ and one in εµ. These are
the residual “degrees of freedom” that we need to eliminate for things to be
invertible.

We can try to fix the εµ symmetry first. From the gauge symmetries, we
observe that if we say

∂νh′µν −
1

2
∂µh

′ +mAµ = 0 (10.326)
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then we can fix the εµ symmetry up to a residual transformation satisfying

(�−m2)εµ = 0, (10.327)

which is good, except it is invariant under Λ transformations. This requires
fixing the Λ symmetry. We observe that by fixing

∂µA
µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)
= 0 (10.328)

we fix the Λ symmetry up to a residual transformation satisfying

(�−m2)Λ = 0. (10.329)

Thus, we impose the following gauge conditions:

∂νh′µν −
1

2
∂µh

′ +mAµ = 0

∂µA
µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)
= 0

Once we have these two gauges, we can add the following gauge-fixing terms
(which are just zeros by gauge-fixing)

SGF1 =

ˆ
dDx −

(
∂νh′µν −

1

2
∂µh

′ +mAµ

)2

(10.330)

and

SGF2 =

ˆ
dDx −

[
∂µA

µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)]2

(10.331)

to the full action (just as we have done before with the original harmonic gauge)
to obtain

S + SGF1 + SGF2 =

ˆ
dDx

[
1

2
h′µν

(
�−m2

)
h′µν − 1

4
h′
(
�−m2

)
h′
]

+
[
Aµ
(
�−m2

)
Aµ
]

+

[
2
D − 1

D − 2
φ
(
�−m2

)
φ

]
κh′µνT

µν +
2

D − 2
κφT − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T

Recall that the sole purpose of doing this is so that we can write the integrand
(the Lagrangian) in terms of the fields and propagators (refer to the part about
gauge harmonic for details). In other words, by adding these gauge-fixing terms,
we in effect “diagonalize” the action.
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With the action in propagator form, we can read off the propagators of h′µν ,
Aµ, and φ respectively:

D[h](p) =
−i

p2 +m2

[
1

2
(ηασηβλ + ηαληβσ)− 1

D − 2
ηαβησλ

]
, (10.332)

D[A](p) =
1

2

−iηµν
p2 +m2

, (10.333)

D[φ](p) =
D − 2

4(D − 1)

−i
p2 +m2

(10.334)

which all behave as ∼ 1/p2 at high momenta, so we can apply the usual power-
counting methods. These propagators might look a bit unusual, but when we
set D = 4,

D[h](p) =
−i

p2 +m2

1

2
[ηασηβλ + ηαληβσ − ηαβησλ] , (10.335)

D[A](p) =
1

2

−iηµν
p2 +m2

, (10.336)

and

D[φ](p) =
1

6

−i
p2 +m2

(10.337)

we see that these are the propagators we have seen before, and the differential
operator-containing terms in the action can be written as

ˆ
dDx

1

2
f...O...f... (10.338)

for each corresponding field f (scalars, vectors, tensors, etc.) where O... is the
inverse of the spatial propagator D[f ](x). I won’t worry too much about the
details here, because we’re not getting any new insights.
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10.3.6 Nonlinear Massive Gravity

Up to this point, we have studied only the linear theory of massive gravity,
which is determined by the requirement that it propagates only one massive
spin 2 degree of freedom. We now turn to the study of the possible interactions
and non-linearities for massive gravity.

Massive General Relativity

Recall the original Einstein-Hilbert action for gravity:

S =
1

16πG

ˆ
dDx
√
−gR ≡

ˆ
dDx
√
−gM2

PR (10.339)

where R is the Ricci scalar, and MP ≡ 1/4πG is the Planck mass. By Hin-
terbichler’s convention, however, M2

P ≡ 1/8πG, so we will be following this
convention and write

S =
1

2κ2

ˆ
dDx
√
−gR (10.340)

where κ ≡ 1/MP in Hinterbichler’s convention.

What we want in a full theory of massive gravity is some nonlinear theory
whose linear expansion around some background is the massive Fierz-Pauli the-
ory. This theory is no longer GR (or Einstein gravity) in general, because we
no longer have an obvious gauge invariance constraint.

Our first modification to the original GR is adding the Fierz-Pauli term to
the full nonlinear GR action. Doing this implies that all nonlinear interactions
are due to GR. The addition of the Fierz-Pauli term is given by

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
(10.341)

where

hµν = gµν − g(0)
µν (10.342)

The Lagrangian now explicitly depends on a fixed metric g
(0)
µν , called the absolute

metric, on which the massive graviton hµν propagates. This means contraction,
raising, and lowering of indices of hµν are done via g(0)µν, and not gµν , which is
the full metric. This is similar to what we had before, where ηµν was responsible
general “index-manipulation.” The presence of this absolute metric in the mass
term breaks the diffeomorphism invariance of the Einstein-Hilbert term.
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Varying this action with respect to gµν (the full metric, NOT the perturba-
tion hµν), we find the following equation of motion

0 =
√
−g
(
Rµν − 1

2
Rgµν

)
+
√
−g(0)

m2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)

(10.343)

(Fun Exercise: How was this found?) We see that because we’re varying
with respect to the full metric gµν , which contracts (and raises and lowers, etc.)
the indices of Rµν , we just get back the Einstein tensor Gµν ≡ Rµν− (1/2)Rgµν

for the first term in the action. The second term is bit more tricky. I will get
back to how we take the variational derivative of the second term with respect
to gµν later when I have time. We actually don’t have to worry too much about
this result, since we are interested in a much more general Fierz-Pauli potential.
In addition to this, we will later see that we can in fact raise/lower indices of h
using gµν , except we must also find the correct relationship between the coeffi-

cients in the g
(0)
µν and the gµν variational derivatives.

In any case, we observe that if the absolute metric g
(0)
µν satisfies the Einstein

equations, then g
(0)
µν = gµν ⇐⇒ hµν = 0 is a solution. In this case, we just

get back the original GR. When dealing with massive gravity and more compli-
cated nonlinear solutions thereof, we can have two background structures. On
one hand, we can have the absolute metric, which breaks diffeomorphism. On
the other, there is the background metric, which is a solution to the full non-
linear equations, about which we may expand the action. Often the solution
metric we are expanding around will be the same as the absolute metric, but if
we were expanding around a different solution, say a black hole, there would be
two distinct structures: the black hole solution and the absolute metric.

We are interested in more general interactions beyond the action provided
above. We will be adding interaction terms with no derivatives, since these are
most important at low energies. The most general such potential which reduces
to Fierz-Pauli at quadratic order involves adding terms cubic and higher in hµν
in all possible ways. With this, we write in general:

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2U(g(0), h)

]
(10.344)

The interaction potential U is the most general one that reduces to Fierz-Pauli
at linear order. The power series representation of this potential U is given by

U(g(0), h) =

N∑
n=2

Un(g(0), h)

= U2(g(0), h) + U3(g(0), h) + U4(g(0), h) + U5(g(0), h) + . . . (10.345)
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where just as before

U2(g(0), h) = g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

= g(0)µαg(0)νβhµνhαβ︸ ︷︷ ︸
≡[h2]

− g(0)µαhµαg
(0)νβhνβ︸ ︷︷ ︸

≡[h]2

= [h2]− [h]2 (10.346)

and further

U3(g(0), h) = C1[h3] + C2[h2][h] + C3[h]3

U4(g(0), h) = D1[h4] +D2[h3][h] +D3[h2]2 +D4[h2][h]2 +D5[h]4

U5(g(0), h) = F1[h5] + F2[h4][h] + F3[h3][h]2 + F4[h3][h2]

+ F5[h2]2[h] + F6[h2][h]3 + F7[h]5

... (10.347)

The square bracket indicates a trace, with indices raised with g(0)µν :

[h] = g(0)µνhµν ,

[h2] = g(0)µνhµνg
(0)αβhαβ

... (10.348)

The coefficients Ck are generic. Note that the dimension of ~Ck in Un(g(0), h)
whenever n > D is actually redundant by 1, not n, because of Cayley-Hamiltonian
theorem, which guarantees that existence of combination of the contractions
(the combination that is the characteristic polynomial LTDh (h)) that annihilates

Un(g
(0)
h ). This means one of the coefficients in Un(g(0), h) whenever n > D can

be set to zero.

For convenience, we will want to reorganize the terms in the potential by
raising and lowering with the full metric gµν rather than the absolute metric
g(0)µν , so that we get a common factor of

√
−g in the action. Under this

“transformation” we can write the action in terms of the new potential V (g, h) =
U(g(0), h):

S =
1

2κ2

ˆ
dDx

[√
−g
(
R− 1

4
m2V (g, h)

)]
(10.349)

where just as before:

V (g, h) =

N∑
n=2

Vn(g, h) = V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + . . .

(10.350)
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with

V2(g(0), h) = gµαgνβ (hµνhαβ − hµαhνβ)

= gµαgνβhµνhαβ︸ ︷︷ ︸
≡〈h2〉

− gµαhµαgνβhνβ︸ ︷︷ ︸
≡〈h〉2

= 〈h2〉 − 〈h〉2

V3(g, h) = C1〈h3〉+ C2〈h2〉〈h〉+ C3〈h〉3

V4(g, h) = D1〈h4〉+D2〈h3〉〈h〉+D3〈h2〉2 +D4〈h2〉〈h〉2 +D5〈h〉4

V5(g, h) = F1〈h5〉+ F2〈h4〉〈h〉+ F3〈h3〉〈h〉2 + F4〈h3〉〈h2〉
+ F5〈h2〉2〈h〉+ F6〈h2〉〈h〉3 + F7〈h〉5

... (10.351)

where the angled brackets are traces with he indices raised with respect to gµν

(not g(0)µν anymore). It does not matter if we use the full or absolute metric, as
long as we correctly relate the coefficients of the two by expanding the inverse
full metric and the full determinant in powers of hµν raise with the absolute
metric. The full metric in terms of a power series in h is:

gµν = g(0)µν − hµν + hµλh ν
λ − hµλh σ

λ h ν
σ + . . . (10.352)

We can actually verify this in xACT with the following commands:

Per = Perturbed[g0[a, b], 3] // ExpandPerturbation

FirstOrderOnly1 = h[LI[n_], __] :> 0 /; n > 1;

Per /. FirstOrderOnly1

The first command gives the 3rd order perturbation of gµν . Now, we want to

express the inverse of gµν = g
(0)
µν + hµν as a power series in hµν . The problem is

the first command in xACT gives us the full expansion including higher pertur-
bative hµν terms, which we don’t want. This is where the first command comes
in and sets every hµν of order higher than 1 (in the perturbation sense, not
powers of h) to zero. The third command applies this condition to the output
of the first command and gives:
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By setting ε = 1 we get the desired expansion above. Presumably we should
be able to get expansions to very orders of h this way. Let’s try order 5:

in more readable symbols:

gµν = g(0)µν − hab + hach b
c − hach d

c h
b
d + hach d

c h
e
d h

b
e − hach d

c h
e
d h

f
e h

b
f + . . .

(10.353)

We also need to expand the determinant. Hinterbichler says:

√
−g =

√
−g(0)

[
1 +

1

2
h− 1

4

(
hµνhµν −

1

2
h2

)
+ . . .

]
(10.354)

but I will need to reproduce this somehow, by hand or by xACT. (Exercise)

We also have the following useful identity:

〈hn〉 =

∞∑
l=0

(−1)l
(
l + n− 1

l

)
[hl+n] (10.355)

for writing the determinant of gµν as an expansion in hµν .
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Spherical solutions and the Vainshtein radius

Next, we look at static spherical solutions. Let D = 4, and for definiteness we
pick the action

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
(10.356)

where the mass term is minimal. We will attempt to find spherically symmetric
solutions to the equation of motion

0 =
√
−g
(
Rµν − 1

2
Rgµν

)
+
√
−g(0)

m2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)

(10.357)

which we took for granted (good to check/reproduce). We will also assume that
the absolute metric is Minkowskian:

g(0)
µν dx

µdxν = −dt2 + dr2 + r2dΩ2 (10.358)

where we’re using the (−,+,+,+) convention. We thus consider a spherically
symmetric solution (hopefully a good ansatz) whose line element is

gµνdx
µdxν = −B(r)dt2 + C(r)dr2 +A(r)r2dΩ2. (10.359)

Here we’re of course assuming (and hoping) that our ansatz works and is diag-
onal, or else we will get mixed r, t,Ω terms in the line element.

Next, we recall the identity:

[F (r)δij +G(r)xixj ]dx
idxj = [F (r) + r2G(r)]dr2 + F (r)r2dΩ2. (10.360)

Based on the ansatz, we have the following:

A(r) ≡ F (r)

C(r) ≡ F (r) + r2G(r) (10.361)

Now, we recall from last time where we found a spherical solution to the eas-
ier problem involving hµν . We started with the matrix elements h00, h0i, and
hij and expressed these in terms of the appropriate F (r), G(r),−B(r). Here
we’re doing kind of the reverse process where we’re starting with the spherical
ansatz. Now, we wish to use the equations of motion to write down the rela-
tionship among these spherical solutions F (r), G(r),−B(r). How do we do this?

Since we’ve assumed the solution is diagonal, we can rely on the tt, rr, and
θθ ≡ φφ equations of motion. In order to get the desired results in the end, we



10.3. MASSIVE GRAVITY 177

can set

g00(r) = −B(r)

g0i(r) = 0

gij(r) = A(r)δij +G(r)xixj (10.362)

and define

C(r) ≡ A(r) + r2G(r). (10.363)

As matrices:

[gµν ]Cartesian =


−B(r)

A(r) + x2G(r) xyG(r) xzG(r)
yxG(r) A(r) + y2G(r) yzG(r)
zxG(r) zyG(r) A(r) + z2G(r)


(10.364)

and

[g(0)
µν ]Spherical =


−1

1
r2

r2 sin2 θ

 (10.365)

We start by evaluating
√
−g. This can be done in Mathematica:

In[2]:= Det[{{-B, 0, 0, 0},
{0, A + x^2*G, x*y*G, x*z*G},
{0, y*x*G, A + y^2*G, y*z*G},
{0, z*x*G, z*y*G, A + z^2*G}}]

Out [2]= -B (A^3 + A^2 G x^2 + A^2 G y^2 + A^2 G z^2)

The output says the determinant of the [gµν ] matrix is

−B(r)A2(r)

A+ (x2 + y2 + z2)︸ ︷︷ ︸
r2

G(r)

 = −A2B (A+ r2G)︸ ︷︷ ︸
C(r)

= −A2BC.

(10.366)

So,
√
−g =

√
A2BC. Next, we want to evaluate

√
−g(0). However, note that

[g
(0)
µν ] is in spherical coordinates, while [gµν ] is in Cartesian coordinates. We

wish to be consistent, so we will just evaluate
√
−g(0) “by analogy” by reading

off the numbers from the line element. Because

g(0)
µν dx

µdxν = −dt2 + dr2 + r2dΩ2

= −(1)dt2 +
(
1 + 0r2

)
dr2 + (1)r2dΩ2

and gµνdx
µdxν = −B(r)dt2 + C(r)dr2 +A(r)r2dΩ2

= −B(r)dt2 +
(
A(r) +G(r)r2

)
dr2 +A(r)r2dΩ2 (10.367)
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and because
√
−g =

√
A2BC, we just have

√
−g(0) =

√
−1 = 1, in Cartesian

coordinates, as expected. We’re also writing the line element wrt g(0) like above
so that it resembles the form of [gµν ]:

[g(0)
µν ]Cartesian =


−1

1 + 0x2 0xy 0xz
0yx 1 + 0y2 0yz
0zx 0zy 1 + 0z2

 =


−1

1
1

1


(10.368)

which is also expected. Throughout the derivations, we will be using the boxed
matrices as our metrics, both of which are in Cartesian coordinates.

With this, we first consider the tt equation:

0 =
√
−g
(
R00 − 1

2
Rg00

)
+
√
−g(0)

m2

2

(
g(0)0αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

(10.369)

We will unpack the second term first. Recall that

hµν = gµν − g(0)
µν . (10.370)

So

g(0)0αg(0)0βhαβ = g(0)0αg(0)0β
(
gαβ − g(0)

αβ

)
= g(0)00g(0)00︸ ︷︷ ︸

1

(
g00 − g(0)

00

)
= −B(r) + 1, (10.371)

and

g(0)αβhαβg
(0)00 = g(0)αβg(0)00

(
gαβ − g(0)

αβ

)
=

4∑
α=0

[
g(0)ααg(0)00

(
gαα − g(0)

αα

)]
= (−B + 1)−

(
A+ x2G− 1

)
−
(
A+ y2G− 1

)
−
(
A+ z2G− 1

)
= (−B + 1)− (3A+ r2G− 3). (10.372)
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And so we have successfully dealt with the second term:√
−g(0)

m2

2

(
g(0)0αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

=
m2

2

[
(−B + 1)− (−B + 1)− (3A+ r2G− 3)

]
=
m2

2
(−3A− r2G+ 3)

=
m2

2

(
−3A+ 3− r2C −A

r2

)
=

m2

2
(2A+ C − 3) (10.373)

Now comes the difficult part of unpacking the Ricci tensor and scalar. We wish
to evaluate the term

R00 − 1

2
Rg00 (10.374)

for µ = ν = 0. First, g00 = −1/B trivially. But what about R00 and R? We
will rely on Mathematica. Part of the calculations is done based on the Mathe-
matica code provided by Catalogue of Spacetimes.

Here is the link to the notebook, which contains just the calculations for the
tt equation. There will be another notebook with the spherical calculations for
the other rr, θθ ≡ φφ equations as well. I’m writing this from the future... the
solution below is found using Cartesian coordinates instead of spherical. While
it is correct (and I have checked many times to make sure it was correct) it is
very, very, cumbersome. The new notebook contains the spherical calculations
for this tt equation as well. If the reader is curious and wants to download a
notebook to view the calculations, I recommend downloading the other notebook,
link in the section where we derive the rr-equation. The notebook requires no
additional packages. It should run on any basic Mathematica installation.

We first clear some symbols, define the dimensions, metric, etc:

Clear[coord , metric , inversemetric , affine , t, x, y, z]

r := Sqrt[x^2 + y^2 + z^2]

n := 4

coord := {t, x, y, z}

metric := {{-B[r], 0, 0, 0},
{0, A[r]+x^2*(-A[r]+C[r])/r^2, x*y*(-A[r]+C[r])/r^2, x*z*(-A[r] + C[r])/r^2},
{0, y*x*(-A[r]+C[r])/r^2, A[r]+y^2*(-A[r]+C[r])/r^2, y*z*(-A[r] + C[r])/r^2},
{0, z*x*(-A[r]+C[r])/r^2, z*y*(-A[r]+C[r])/r^2, A[r] + z^2*(-A[r]+C[r])/r^2}}

Note that the metric gµν we should be using here must be in terms ofB(r), A(r), C(r),
since we ultimately want solutions in terms of these functions. In matrix form,

https://arxiv.org/pdf/0904.4184.pdf
https://huanqbui.com/LaTeX projects/HuanBui_QM/Cartesian_Vainshtein.nb
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[gµν ] is

[gµν ] =


−B

A+ x2
(
C−A
r2

)
xy
(
C−A
r2

)
xz
(
C−A
r2

)
yx
(
C−A
r2

)
A+ y2

(
C−A
r2

)
yz
(
C−A
r2

)
zx
(
C−A
r2

)
zy
(
C−A
r2

)
A+ z2

(
C−A
r2

)
 (10.375)

It is easy to check that
√
−g =

√
A2BC by brute forcing in Mathematica. I

won’t reproduce the results here.

Next, we find the inverse metric, in order to set up for calculations of
Christoffel symbols, Riemann, Ricci tensors, and the Ricci scalar.

inversemetric := Simplify[Inverse[metric ]]

Every now and then, we define “rules” to force-simplify things.

Next, we calculate Christoffel symbols of the 2nd kind:

Calculating the Christoffel symbols of the second kind:

rule1 = {A[Sqrt[
x^2 + y^2 + z^2]] + (x^2 + y^2 + z^2) G[Sqrt[
x^2 + y^2 + z^2]] -> C[r]};

affine := affine =
Simplify[Table [(1/2) Sum[
inversemetric [[Mu, Rho]] (D[metric [[Rho , Nu]], coord [[ Lambda ]]] +
D[metric [[Rho , Lambda]], coord[[Nu]]] -
D[metric [[Nu , Lambda]], coord [[Rho]]]), {Rho , 1, n}], {Nu, 1,
n}, {Lambda , 1, n}, {Mu, 1, n}]]

listaffine :=
Table[If[UnsameQ[affine [[Nu, Lambda , Mu]],
0], {Style[
Subsuperscript [\[ CapitalGamma], Row[{ coord[[Nu]], coord[[ Lambda ]]}],
coord[[Mu]]], 18], "=", Style[affine [[Nu, Lambda , Mu]], 14]}], {Lambda ,
1, n}, {Nu , 1, Lambda}, {Mu, 1, n}]

Simplify[TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 3],
TableSpacing -> {1, 2}] /. rule1]

This outputs an entire table of nontrivial Christoffel symbols which we won’t
worry about. Here’s a snippet of the output:

Next, we define and compute the lower-index Riemann tensors:

Defining the Riemann tensor.

riemann :=
riemann = Table[
D[affine [[Nu , Sigma , Mu]], coord [[Rho ]]] -
D[affine [[Nu , Rho , Mu]], coord[[Sigma ]]] +
Sum[affine [[Rho , Lambda , Mu]] affine [[Nu, Sigma , Lambda ]] -
affine [[Sigma , Lambda , Mu]] affine [[Nu, Rho , Lambda]], {Lambda , 1,
n}], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]
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Defining the Riemann tensor with lower indices.

riemannDn :=
riemannDn =
Table[Simplify[
Sum[metric [[Mu, Kappa]] riemann [[Kappa , Nu , Rho , Sigma]], {Kappa , 1,
n}]], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

listRiemann :=
Table[If[UnsameQ[riemannDn [[Mu, Nu, Rho , Sigma]],
0], {Style[
Subscript[R,
Row[{coord[[Mu]], coord[[Nu]], coord [[Rho]], coord[[Sigma ]]}]], 16],
"=", riemannDn [[Mu, Nu, Rho , Sigma ]]}], {Nu, 1, n}, {Mu, 1, Nu}, {Sigma ,
1, n}, {Rho , 1, Sigma}]

Simplify[Simplify[
TableForm[Partition[DeleteCases[Flatten[listRiemann], Null], 3],
TableSpacing -> {2, 2}] /. rule1] /. rule1]

There are (obviously) a lot of them. Here are some:

Almost there... Next, we define the Ricci tensors:

Defining Ricci tensor:

ricci := ricci =
Table[Simplify[Sum[riemann [[Rho , Mu , Rho , Nu]], {Rho , 1, n}]], {Mu, 1,
n}, {Nu , 1, n}]

listRicci :=
Table[If[UnsameQ[ricci[[Mu, Nu]],
0], {Style[Subscript[R, Row[{ coord[[Mu]], coord[[Nu]]}]], 16], "=",
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Style[ricci [[Mu, Nu]], 16]}] , {Nu , 1, 4}, {Mu, 1, Nu}]

TableForm[Partition[DeleteCases[Flatten[listRicci], Null], 3],
TableSpacing -> {1, 2}]

There aren’t too many of these, but no expression is short enough to fit the width
of the page, so I will just include Rtt and truncated versions of Rxx, Ryy, . . .

Okay. Moving on to the last item: the Ricci scalar.

Defining Ricci scalar:

ricciscalar :=
ricciscalar =
Simplify[Sum[
Sum[inversemetric [[Mu, Nu]] ricci[[Nu, Mu]], {Mu, 1, n}], {Nu, 1, n}]]

Simplify[Simplify[ricciscalar ]]

The output isn’t very useful to work with: so we will define more rules to

simplify it to a useful form:

rule2 = {Sqrt[x^2 + y^2 + z^2] -> R};

rule3 = {(x^2 + y^2 + z^2)^( -1/2) -> R^( -1)};

rule4 = {(x^2 + y^2 + z^2)^(3/2) -> R^3};

rule5 = {(x^2 + y^2 + z^2) -> R^2};

rule6 = {Sqrt[R^2]^( -1) -> R^( -1)};

RR = Simplify[
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify[ricciscalar] /. rule1] /. rule2] /.
rule3] /. rule4] /. rule5] /. rule6]

(1/(2 R^2 A[R]^2 B[R]^2 C[
R]^2))(R^2 B[R]^2 C[R] Derivative [1][A][R]^2 +
2 A[R] B[R] (-R^2 C[R] Derivative [1][A][R] Derivative [1][B][R] +
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B[R] (2 C[R]^2 + R^2 Derivative [1][A][R] Derivative [1][C][R] -
2 R C[R] (3 Derivative [1][A][R] +
R (A^\[ Prime ]\[ Prime ])[R]))) +
A[R]^2 (R^2 C[R] Derivative [1][B][R]^2 -
4 B[R]^2 (C[R] - R Derivative [1][C][R]) +
R B[R] (R Derivative [1][B][R] Derivative [1][C][R] -
2 C[R] (2 Derivative [1][B][R] + R (B^\[ Prime ]\[ Prime ])[R]))))

In symbols:

Now, we want the quantity, which is LeftTerm minus RightTerm

R00 − 1

2
Rg00 ≡ LeftTerm− RightTerm. (10.376)

The LeftTerm is obtained from raising the indices of Rµν . This turned out
not to be very difficult, because g0ν entries are all zero except at ν = 0 where
g00 = −1/B. We need two of these to raise the indices of Rµν , so as a result we
have R00 = (1/B2)R00. The Rtt term in the code below is just R00.

LeftTerm :=
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify[Rtt /. rule1] /. rule2] /. rule3] /.
rule4] /. rule5] /. rule6];

RightTerm :=
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify [(1/2)* RR*(-1/B[R]) /. rule1] /. rule2] /.
rule3] /. rule4] /. rule5] /. rule6 ];

LeftTerm - RightTerm

The RightTerm is just (1/2)Rg00. The output is

Next, we define more rules to help with simplifying things:

rule7 = {(2 C[R]^2 + R^2 Derivative [1][A][R] Derivative [1][C][R] -
2 R C[R] (3 Derivative [1][A][R] + R (A^\[ Prime ]\[ Prime ])[R])) ->
STUFF1 };

Simplify[LeftTerm - RightTerm /. rule7]

rule8 = {R^2 C[R] Derivative [1][A][R]^2 -> STUFF2 };

Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8]
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rule9 = {-4 A[R]^2 (C[R] - R Derivative [1][C][R]) -> STUFF3 };

Simplify[Simplify[
Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /. rule9]

rule10 = {2 STUFF1 A[R] -> STUFF4 };

Simplify[Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10]

rule11 = {STUFF2 + STUFF3 + STUFF4 -> STUFF5 };

Simplify[Simplify[
Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10] /. rule11]

We expand the final output and look for things to cancel:

Simplify[Simplify[
Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10] /. rule11] // ExpandAll

Do you see where things cancel?

So we’re left with just

R00 − 1

2
Rg00 =

r2C(A′)2 − 4A2(C − rC ′) + 2A
(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)
4r2A2BC2

.

(10.377)

Next, we bring in the square root of minus the determinant of g:

√
−g
(
R00 − 1

2
Rg00

)
=
√
A2BC

r2C(A′)2 − 4A2(C − rC ′) + 2A
(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)
4r2A2BC2

.

(10.378)
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And... we have the tt equation:

0 =
√
−g
(
R00 − 1

2
Rg00

)
+
√
−g(0)

m2

2

(
g(0)00αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

0 =
√
A2BC

{
r2C(A′)2 − 4A2(C − rC ′) + 2A

(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)}
+
m2

2
(2A+ C − 3) (4r2A2BC2) (10.379)

The simplified form, the tt equation is:

0 = 4BC2m2r2A3 + [2B(C − 3)C2m2r2 − 4
√
A2BC(C − rC ′)]A2

2
√
A2BC[2C2 − 2r(3A′ + rA′′)C + r2A′C ′]A+ C

√
A2BCr2(A′)2

(10.380)
Next, we find the rr equation. It is at this point that we realized we’ve been

doing things the HARD WAY by working in Cartesian coordinates. There’s
a reason, however. In Cartesian coordinates, the determinant of gµν does not
have dependence on r and sin θ. In spherical coordinates, there is dependence
on θ, but I think that because the sin θ term appears in both the determinant
of the g metric and the Minkowskian metric, we can just ignore it because the
LHS must be zero.

In any case, we learned something by taking the Cartesian route. We will
soon see how well-behaved things become once we go to spherical coordinates.
I have uploaded a new Mathematica notebook with the actual, full, spherical
solution. This notebook contains the derivation of the tt equation as well.

From here on, we will be using metrics in spherical coordinates. From the
specified line elements, the metrics are:

[gµν ] =


−B

C
Ar2

Ar2 sin2 θ

 (10.381)

and

[g(0)
µν ] =


−1

1
r2

r2 sin2 θ

 (10.382)

Let us redefine everything in terms of spherical coordinates in the notebook
and go over the calculations again. Trust me this will be quick.

https://huanqbui.com/LaTeX projects/HuanBui_QM/SphericalSolution_Vainshtein.nb
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Clear[coord , metric , inversemetric , affine , t, r, \[Theta], \[Phi]]

n := 4

coord := {t, r, \[Theta], \[Phi]}

metric := {{-B[r], 0, 0, 0},
{0, C[r], 0, 0},
{0, 0, r^2*A[r], 0},
{0, 0, 0, r^2*Sin [\[ Theta ]]^2*A[r]}}

inversemetric := Simplify[Inverse[metric ]]

Calculating the Christoffel symbols of the second kind:

affine := affine =
Simplify[Table [(1/2) Sum[
inversemetric [[Mu, Rho]] (D[metric [[Rho , Nu]], coord [[ Lambda ]]] +
D[metric [[Rho , Lambda]], coord[[Nu]]] -
D[metric [[Nu , Lambda]], coord [[Rho]]]), {Rho , 1, n}], {Nu, 1,
n}, {Lambda , 1, n}, {Mu, 1, n}]]

listaffine :=
Table[If[UnsameQ[affine [[Nu, Lambda , Mu]],
0], {Style[
Subsuperscript [\[ CapitalGamma], Row[{ coord[[Nu]], coord[[ Lambda ]]}],
coord[[Mu]]], 18], "=", Style[affine [[Nu, Lambda , Mu]], 14]}], {Lambda ,
1, n}, {Nu , 1, Lambda}, {Mu, 1, n}]

Simplify[TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 3],
TableSpacing -> {1, 2}] /. rule1]

Here are the Christoffel symbols in spherical coordinates:

Let the calculations continue...

Defining the Riemann tensor.

riemann :=
riemann = Table[
D[affine [[Nu , Sigma , Mu]], coord [[Rho ]]] -
D[affine [[Nu , Rho , Mu]], coord[[Sigma ]]] +
Sum[affine [[Rho , Lambda , Mu]] affine [[Nu, Sigma , Lambda ]] -
affine [[Sigma , Lambda , Mu]] affine [[Nu, Rho , Lambda]], {Lambda , 1,
n}], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

Defining the Riemann tensor with lower indices.
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riemannDn :=
riemannDn =
Table[Simplify[
Sum[metric [[Mu, Kappa]] riemann [[Kappa , Nu , Rho , Sigma]], {Kappa , 1,
n}]], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

listRiemann :=
Table[If[UnsameQ[riemannDn [[Mu, Nu, Rho , Sigma]],
0], {Style[
Subscript[R,
Row[{coord[[Mu]], coord[[Nu]], coord [[Rho]], coord[[Sigma ]]}]], 16],
"=", riemannDn [[Mu, Nu, Rho , Sigma ]]}], {Nu, 1, n}, {Mu, 1, Nu}, {Sigma ,
1, n}, {Rho , 1, Sigma}]

Simplify[Simplify[
TableForm[Partition[DeleteCases[Flatten[listRiemann], Null], 3],
TableSpacing -> {2, 2}] /. rule1] /. rule1]

Then comes the Ricci quantities:

Defining Ricci tensor:

ricci := ricci =
Table[Simplify[Sum[riemann [[Rho , Mu , Rho , Nu]], {Rho , 1, n}]], {Mu, 1,
n}, {Nu , 1, n}]

listRicci :=
Table[If[UnsameQ[ricci[[Mu, Nu]],
0], {Style[Subscript[R, Row[{ coord[[Mu]], coord[[Nu]]}]], 16], "=",
Style[ricci [[Mu , Nu]], 16]}] , {Nu , 1, 4}, {Mu, 1, Nu}]

TableForm[Partition[DeleteCases[Flatten[listRicci], Null], 3],
TableSpacing -> {1, 2}]

Defining Ricci scalar:

ricciscalar :=
ricciscalar =
Simplify[Sum[
Sum[inversemetric [[Mu, Nu]] ricci[[Nu, Mu]], {Mu, 1, n}], {Nu, 1, n}]]

Simplify[Simplify[ricciscalar ]]

RR = Simplify[ricciscalar]

Here’s the output:
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Next we consider Rrr. We want Rrr, so we simply multiplying Rrr by 1/C2,
because gµν is diagonal in spherical coordinates. We first consider the term

Rrr − 1

2
Rgrr. (10.383)

To this end we repeat the process with the LeftTerm and RightTerm earlier to
get

LeftTerm :=
Simplify[Simplify[
Simplify[Simplify[Simplify[Simplify[Rrr/C[r]^2]]]]]];

RightTerm :=
Simplify[Simplify[
Simplify[Simplify[Simplify[Simplify [(1/2)* RR*(1/C[r])]]]]]];

Simplify[LeftTerm - RightTerm] // ExpandAll // ExpandAll

Of course things cancel again! Simplifying gives
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Next, we consider the term

√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)
. (10.384)

Of course the first term is just going to be h11 = C − 1. The second term has
some contractions with factors of sines and r2 floating around. But we can do
this quickly by ignoring everything that is not the functions A,B,C. We can
do this because when we multiplying the inverses g(0)µν with hµν , the r2 and
sine factors automatically cancel out. The result is

√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)

=
−m2

2
(2(A− 1)− (−B + 1))

=
−m2(2A+B − 3)

2

(10.385)

Putting everything together, we will find the rr equation:

0 =
√
−g
(
Rrr − 1

2
Rgrr

)
+
√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)

0 =
r2B(A′)2 + 4A2(B + rB′) +A[−4B(C − rA′) + 2r2A′B′]

A2BC2r2

− 2m2(2A+B − 3)√
A2BC

(10.386)
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Simplifying this gives the rr equation:

0 =
4(B + rB′)A2 + [2r2A′B′ − 4B(C − rA′)]A+Br2(A′)2

A2BC2r2

− 2(2A+B − 3)m2

√
A2BC

(10.387)

Finally, to get the θθ ≡ φφ equation, we go through the process above once
more. To make things a little easier, I’ll just derive the θθ equation with Rθθ
instead of Rθθ. This way, I don’t have to worry about factors of contractions,
etc.

This simplifies to

On to the
√
g(0) terms, we compute

√
−g(0)

m2

2

(
g(0)2αg(0)2βhαβ − g(0)αβhαβg

(0)22
)
. (10.388)
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I won’t show the rest of the calculations here. The θθ ≡ φφ equation is

0 = −2B2C2m2rA4 − 2B2C2(B + C − 3)m2rA3

−
√
A2BC{2C ′B2 + [rB′C ′ − 2C(B′ + rB′′)]B + Cr(B′)2}A

+B
√
A2BC[CrA′B′ +B(4CA′ − rC ′A′ + 2CrA′′)]A−B2C

√
A2BCr(A′)2.

(10.389)
I’ll just put the other two equations here, for convenience. The rr equation is

0 =
4(B + rB′)A2 + [2r2A′B′ − 4B(C − rA′)]A+Br2(A′)2

A2BC2r2

− 2(2A+B − 3)m2

√
A2BC

(10.390)

The tt equation is

0 = 4BC2m2r2A3 + [2B(C − 3)C2m2r2 − 4
√
A2BC(C − rC ′)]A2

2
√
A2BC[2C2 − 2r(3A′ + rA′′)C + r2A′C ′]A+ C

√
A2BCr2(A′)2

(10.391)
The next step is to solve for A(r), B(r), C(r). To do this we first expand

them in the flat space regime, where

B0(r) = 1 (10.392)

A0(r) = 1 (10.393)

C0(r) = 1. (10.394)

To obtain higher order terms, we introduce the expansion

B(r) = B0(r) + εB1(r) + ε2B2(r) + . . . (10.395)

C(r) = C0(r) + εC1(r) + ε2C2(r) + . . . (10.396)

A(r) = A0(r) + εA1(r) + ε2A2(r) + . . . (10.397)

Plugging this into the equations we just found and collecting terms ofO(ε),O(ε2), . . . .
This allows us to solve for B1, A1, C1, then B2, A2, C2, and so on. At O(ε), we
define the expansions in Mathematica only up to O(ε). (Note: there are proba-
bly other ways to do this, but I like it this way. In addition, I will stop including
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the code because the notebook can be downloaded via the link above. I will
just include important outputs from now on. ) Next, we define the tt, rr, θθ
equations, using these new function(al)s. (Again, there’s probably a more clever
and more efficient way to do this, but my method works so far so I’ll stick with
it.) Once that is done, we must define some rules for simplification. Some of

these rules are for helping Mathematica simplify, but some are also important
when we extract out O(ε) terms.

rule12 = {Sqrt [(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])] -> 1};

rule13 = {Derivative [1][AA][r] -> e*Derivative [1][A1][r]};

rule14 = {(AA^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][A1][r]};

rule15 = {(CC^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][C1][r]};

rule16 = {Derivative [1][CC][r] -> e*Derivative [1][C1][r]};

rule17 = {Sqrt [(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])]^( -1) -> 1};

rule18 = {(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r]) -> 1};

rule19 = {((1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])^2)^( -1) -> 1};

rule20 = {Derivative [1][BB][r] -> e*Derivative [1][B1][r]};

rule21 = {(BB^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][B1][r]};

With these rules, we proceed to collect the O(ε) terms in each equation:
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ttSim := Coefficient[
tt /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 , e] // Simplify

rrSim := rr /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /.
rule17 /. rule18 /. rule19 /. rule20 /. rule21

rrSimSim =
Coefficient[rrSim /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 ,
e] // Simplify

ththSim :=
thth /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /. rule17 /.
rule18 /. rule19 /. rule20 /. rule21

thSimSim =
Coefficient[
ththSim /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /.
rule17 /. rule18 /. rule19 /. rule20 /. rule21 , e] // Simplify

Some equations are stubborn and require multiple simplifying, but the result
is quite satisfying. Here are the coefficients of ε in the tt, rr, θθ equations,
respectively: Now, these coefficients must all be zero when A,B,C solve the

tt, rr, θθ equations, so we have (in more readable symbols):

2(m2r2 − 1)A1 + (m2r2 + 2)C1 + 2r(−3A′1 + C ′1 − rA′′1) = 0 (10.398)

−1

2
B1m

2 +

(
1

r2
−m2

)
A1 +

r(A′1 +B′1)− C1

r2
= 0 (10.399)

rA1m
2 + rB1m

2 + rC1m
2 − 2A′1 −B′1 + C ′1 − rA′′1 − rB′′1 = 0 (10.400)

Okay. To solve for A1, B1, C1, we start with simultaneously solving three equa-
tions algebraically for A1, A

′
1, A

′′
1 in terms of B,C are their derivatives. To do

this, we use Mathematica’s NSolve:

NSolve [{ttSim == 0, rrSimSim == 0, thSimSim == 0}, {A1[r],
Derivative [1][A1][r], Derivative [2][A1][r]}] //
Simplify // FullSimplify

Here I’m storing the solutions in new variables for ease of access: Once this is
done, we write down two equations: (1) A′1 = ∂rA1, and (2) A′′1 = ∂rA1, then
proceed to algebraically solve this system for C1 and C ′1 in terms of B1 and its
derivatives. I will only the include the input. Finally, settings C ′1 − ∂rC1 = 0,
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we get a second-order differential equation for B1(r): Of course this simplifies
to

−3rB1m
2 + 6B′1 + 3rB′′1 = 0 (10.401)

This can be DSolve’d easily in Mathematica:

DSolve[-3 m^2 r B1[r] + 6 Derivative [1][B1][r] +
3 r (B1^\[ Prime ]\[ Prime ])[r] == 0, B1[r], r]

which says

B1(r) = C1
e−mr

r
+ C2

emr

2mr
(10.402)

where C1 and C2 are integration constants. Now, when m → 0, B1(r) must
remain finite, so we rule out the other linearly independent solution. This gives

B1(r) = −8GM

3

e−mr

r
(10.403)

where the integration constant has been chosen so that we agree with the solu-
tion (10.244) obtained from the Green’s function.

From here, it is very easy to get C1, A1 from B1, because we already solved
for these in terms of B and B,C respectively:
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B1(r) = −8GM

3

e−mr

r

C1(r) = −8GM

3

e−mr

r

1 +mr

m2r2

A1(r) =
4GM

3

e−mr

r

1 +mr +m2r2

m2r2

(10.404)

(10.405)

(10.406)

So, the O(ε) problem is done, so we move on to the O(ε2) problem. The
procedure will be exactly the same, so I will just put the code-outputs here
without saying much. Some new rules will be defined along the way to help
Mathematica with simplification. Also, so as not to completely ruin the previous
code for the O(ε) problem, I will be using slightly different names for some
functions. Thanks to Hinterbichler himself, I will be using a different function,
SeriesCoefficient[ ], for expanding and collecting the O(ε2) terms. This
is a better way to do things than using just the naive Coefficient[..., ε2]
function. First, we redefine the expansions:

Then we start with our original tt, rr, and θθ equations:
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To make Mathematica appropriately expand the series expansion of B,C,A
in these equations, we define

With this, the tt equation, under the solved B1, C1, A1 is given by

Notice that we’re now using SeriesCoefficient[] instead of Coefficient
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like last time. We write

0 = 4(−1 +m2r2)A2[r] +
1

9m4r6
2e−2mr

[
9e2mrm4r6(2 +m2r2)C2[r]+

2
(
180G2M2 + 360G2mM2r + 276G2m2M2r2 + 72G2m3M2r3

−24G2m4M2r4 − 16G2m5M2r5 − 12G2m6M2r6

−27e2mrm4r7A′2[r] + 9e2mrm4r7C ′2[r]− 9e2mrm4r8A′′2 [r]
)

]
(10.407)

We do a similar thing for the rr equation: We write

0 =
1

9m4r8
2e−2mr

[
−18e2mrm4r6(−1 +m2r2)A2[r]− 9e2mrm6r8B2[r]

+2
(
36G2M2 + 72G2mM2r + 116G2m2M2r2 + 136G2m3M2r3

+120G2m4M2r4 + 48G2m5M2r5 − 12G2m6M2r6

−9e2mrm4r6C2[r] + 9e2mrm4r7A′2[r] + 9e2mrm4r7B′2[r]
)

]
(10.408)

Same thing for the θθ equation: We write
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0 =
2

9

[
−216e−2mrG2M2

m4r7
− 432e−2mrG2M2

m3r6
− 536e−2mrG2M2

m2r5
− 496e−2mrG2M2

mr4

−400e−2mrG2M2

r3
− 256e−2mrG2mM2

r2
− 120e−2mrG2m2M2

r
− 9m2rB2[r]

−9m2rA2[r]− 9m2rC2[r] + 18A′2[r] + 9B′2[r]− 9C ′2[r] + 9rA′′2 [r] + 9rB′′2 [r]
]

(10.409)

Solving tt = 0, rr = 0, θθ = 0 for A2, A
′
2, A

′′
2 we get
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Then we solve for C2, C
′
2 from the A2 equations:

Setting C ′2 = (∂r)C2 we get the equation for B2:

We are only interested in the leading order term for B2, we so find it. Plug-
ging B2 back into the C2 and A2 equations and taking their leading terms we get
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With these, we set ε→ 1 plug them back into the original expansion. After
some factorizations we get

B(r) = 1− 8

3

GM

r

(
1− 1

6

GM

m4r5
+ . . .

)
C(r) = 1− 8

3

GM

m2r3

(
1− 14

GM

m4r5
+ . . .

)
A(r) = 1 +

4

3

GM

m2r3

(
1− 4

GM

m4r5
+ . . .

)
(10.410)

where the dots represent higher powers in the nonlinearity parameter ε. The
nonlinearity expansion is an expansion in the parameter rV /r, with

rV ≡
(
GM

m4

)1/5

(10.411)

is known as the Vainshtein radius. Notice that with this procedure, we can go
on to extract solutions at O(εn). However, we won’t do that for now.

When m → 0, rV → ∞, and hence the radius beyond which the solution
can be trusted gets pushed out to infinity. Vainshtein argued (in 1972) that this
perturbation expansion breaks down and says nothing about the true nonlinear
behavior of masive gravity in the massless limit. Thus there was reason to
hope that the vDVZ discontinuity was merely an artifact of linear perturbation
theory, and that the true nonlinear solutions showed a smooth limit.
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Nonlinear Hamiltonian & The Boulware-Deser mode

We’ll skip this section entirely.
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10.3.7 The Nonlinear Stückelberg Formalism

In this section we extend the Stückelberg trick to full nonlinear order. This
allows us to trace the breakdown in the linear expansion to strong coupling of
the longitudinal mode. It also tells us about quantum corrections, the scale of
the effective field theory and where it breaks down.

Stükelberg for gravity and the restoration of diffeomorphism invari-
ance

In this subsubsection we construct the full nonlinear gravitational Stückelberg.
The paper by Arkani-Hamed et. al. introduces this extensively.

The full finite gauge transformation for gravity is

gµν(x)→ ∂fα

∂xµ
∂fβ

∂xν
gαβ(f(x)) (10.412)

where f(x) is any arbitrary gauge function, which must be a diffeomorphism. In
massive gravity, gauge invariance is broken only by the mass term. To restore
invariance, we introduce a Stückelberg field Y µ(x) and apply it to the metric
gµν :

gµν(x)→ Gµν =
∂Y α

∂xµ
∂Y β

∂xν
gαβ(Y (x)) (10.413)

The Einstein-Hilbert term
√
−gR does not change under this substitution,

because it is gauge invariant. The substitution looks similar to a gauge trans-
formation with gauge parameter Y µ, so no Y fields are introduced into the
Einstein-Hilbert part of the action.

The graviton mass term, however, picks up dependence on Y ′s in such a way
that it will not be invariant under the following gauge transformation:

gµν(x)→ ∂fα

∂xµ
∂fβ

∂xν
gαβ(f(x)) (10.414)

Y µ(x)→ f−1(Y (x))µ (10.415)

with f(x) being the gauge function. This is because the combination Gµν is
gauge invariance. To see this we transform gµν :

Gµν = ∂µY
α∂νY

βgαβ(Y (x))→ ∂µY
α∂νY

β [???] (10.416)

How does gαβ(Y (x)) transform under f? To correctly do this transformation,
we can start with transforming something easy first, say the scalar field, φ. We
know that φ(x) transforms under f as φ → φ(f(x)). We wish to know how
φ(Y (x)) transforms under f . Well,

φ(Y (x)) ≡
ˆ

dy φ(y)δ(y − Y (x)). (10.417)
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Now that φ has coordinate dependence, y, we now how coordinate transforms
under f : y → f(y). So, under f ,

φ(Y (x)) ≡
ˆ

dy φ(y)δ(y − Y (x))→
ˆ

dy φ(f(y))δ(y − Y (x)) = φ(f(Y (x))).

(10.418)

You can repeat this procedure for the metric. We know that under f ,

gµν → ∂µf
α∂νf

βgαβ(f(x)) (10.419)

so gαβ(Y (x)) transforms as

gαβ(Y (x))→
(
∂αf

λ|Y
)

(∂βf
σ|Y ) gλσ(f(Y (x))). (10.420)

where |Y denotes “evaluated at Y .” With this, we can complete Eq. (10.416):

Gµν = ∂µY
α∂νY

βgαβ(Y (x))→ ∂µY
α∂νY

β
[
∂αf

λ|Y ∂βfσ|Y gλσ(f(Y (x)))
]

(10.421)

But that’s not all, we want to pull back, using f−1, to get gλσ(Y (x)). To this
end, we simple replace instances of Y by f−1(Y ), so that the transformation
continues as

Gµν → ∂µY
α∂νY

β
[
∂αf

λ|Y ∂βfσ|Y gλσ(f(Y (x)))
]

→ ∂µ[f−1(Y )]α∂ν [f−1(Y )]β
[
∂αf

λ|f−1(Y )∂βf
σ|f−1(Y )gλσ(f([f−1(Y )]))

]
= ∂µ[f−1(Y )]α∂ν [f−1(Y )]β

[
∂αf

λ|f−1(Y )∂βf
σ|f−1(Y )gλσ(Y (x)))

]
= (∂ρ[f

−1]α|Y )(∂µY
ρ)(∂τ [f−1]β |Y )(∂νY

τ )(∂αf
λ|f−1(Y ))(∂βf

σ|f−1(Y ))gλσ(Y (x)))

(just the chain rule)

= δλρ δ
σ
τ ∂µY

ρ∂νY
τgλσ(Y (x)) (10.422)

where we have used the fact that

(∂ρ[f
−1]α|Y )(∂αf

λ|f−1(Y )) = δλρ (10.423)

which relies on the calculus fact:

∂xf
−1(X) =

1

f ′(f(x))
. (10.424)

Putting everything together, we see that

Gµν → · · · → . . . = δλρ δ
σ
τ ∂µY

ρ∂νY
τgλσ(Y (x))

= ∂µY
λ∂νY

σgλσ(Y (x))

= Gµν , (10.425)

i.e.,

gµν → Gµν → ∂µY
λ∂νY

σgλσ(Y (x)) ≡ Gµν (10.426)
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which says that the combination Gµν is gauge invariant.

Now, we expand Y about the identity function

Y α(x) = xα +Aα(x). (10.427)

Then the gauge-invariant combination Gµν expands as

Gµν =
∂Y α(x)

∂xµ(x)

∂Y β

∂xν
gαβ(Y (x))

=
∂(xα +Aα)

∂xµ
∂(xβ +Aβ)

∂xν
gαβ(x+A)

= (δαµ + ∂µA
α)(δβν + ∂νA

β)

(
gαβ +Aµ∂µgαβ +

1

2
AµAν∂µ∂νgαβ + h.o.t.s.

)
= gµν +Aλ∂λgµν + ∂µA

αgαν + ∂νA
αgαµ +

1

2
AαAβ∂α∂βgµν

+ ∂µA
α∂νA

βgαβ + ∂µA
αAβ∂βgαν + ∂νA

αAβ∂βgµα + h.o.t.s. (10.428)

Next, we look at the infinitesimal transformation properties of g,A,G, Y
under the infinitesimal general coordinate transforms generated by

f(x) = x+ ξ(x) =⇒ f−1(x) ≈ x− ξ(x) (10.429)

which is a diffeomorphism. The transformations of g,A,G, Y are given by taking
the the Lie derivatives (for more information, refer to the CFT notes) - “C” for
classical. The metric tensor transforms via the Lie derivative rule for tensors:

δgµν = ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgµλ (10.430)

To find how Y transforms under f , we just plug Y into the transformation f :

Y µ(x)→ f−1(Y (x))µ ≈ Y µ(x)− ξµ(Y (x)) (10.431)

which gives

δY µ = −ξµ(Y ) (10.432)

and

δAµ = −ξ(x+A) = −ξµ −Aα∂αξµ −
1

2
AαAβ∂α∂βξ

µ − h.o.t.s. (10.433)

The Aµ are the Goldstone bosons that nonlinearly carry the broken diffeomor-
phism invariance in massive gravity. The gauge-invariant combination Gµν is of
course gauge-invariant:

δGµν = 0 (10.434)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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With these, we can now Stückelberg the general massive gravity action of
the form of Eq. (10.344):

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2U(g(0), h)

]
(10.435)

where interaction potential U is the most general one that reduces to Fierz-
Pauli at linear order. The Einstein-Hilbert term is intact, while in the mass
term we write all hµν ’s with lower indices to get rid of the dependence on the

absolute metric g
(0)
µν (which is also the background metric). We then replace all

occurrences of hµν withHµν given by

Hµν(x) = Gµν(x)− g(0)
µν (x) (10.436)

We then expand Gµν in terms of Aλ and gµν as in Eq. (10.428) and Y µ as

xµ +Aµ(x). To linear order in hµν ≡ gµν − g(0)
µν and Aµ we have

Hµν = hµν +∇(0)
µ Aν +∇(0)

ν Aµ (10.437)

where indices on A are lowered with g
(0)
µν and ∇(0)

λ denotes covariant derivatives

under the absolute metric g
(0)
µν . (The derivation is left as an index-manipulation

exercise.)

When the background metric is flat, i.e. g
(0)
µν ≡ ηµν , the expansion is

Hµν = hµν + ∂µAν + ∂νAµ + ∂µA
α∂νAα + h.o.t.s. (10.438)

(Once again, the derivation is left as an exercise in index manipulation.) The
higher order terms are terms with at least one power of h.

As in the linear case, we also want to introduce a U(1) gauge symmetry, so
let

Aµ → Aµ + ∂µφ. (10.439)

With this, the expansion for the flat background metric takes the form

Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νAα

∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s. (10.440)

Similarly, higher order terms are terms with at least one power of h. The gauge
transformation rules in this case are

δhµν = ∂µξν + ∂νξµ + Lξhµν (10.441)

δφ = −Λ (10.442)

δAµ = ∂µΛ− ξµ −Aα∂αξµ −
1

2
AαAβ∂α∂βξµ − h.o.t.s. (10.443)

where Lξ denotes the Lie derivative.
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Another way to Stückelberg

In the last section we introduced gauge invariance and the Stückelberg fields by
replacing the metric gµν by the invariant combination Gµν . This method is good
when we have a potential arranged in the form Eq. (10.344). One draw back
of this method is that the Stückelberg expansion involves an infinite number of
terms of higher order in hµν . This is not good when we want to keep track of
the hµν ’s.

In this section, we introduce the Stückelberg fields through the background

metric g
(0)
µν , then allow gµν to transform covariantly. This method is suite to a

potential arranged in the form Eq. (10.349):

S =
1

2κ2

ˆ
dDx

[√
−g
(
R− 1

4
m2V (g, h)

)]
(10.444)

where the difference between this and the previous arrangement is the lack of
dependence on

√
−g(0). This method contains to higher powers of hµν .

The replacement to make is

g(0)
µν → g

(0)
αβ∂µY

α∂νY
β (10.445)

The Y α(x) being introduced are the four Stückelberg fields, which despite
the index α are to transform as scalars under diffeomorphisms, i.e.

Y α(x)→ Y α(f(x)) ⇐⇒ δY α = ξν∂νY
α (10.446)

where the second equality follows from Lie derivative rules for infinitesimal
transformations (again, see the CFT notes for details).

In other words, Y α does not transform like a vector, despite the index.

With this transformation rule, it is easy to see that the replaced g
(0)
µν , namely,

g
(0)
αβ∂µY

α∂νY
β transforms similar to a metric tensor.

This is nice when we are working with the potential of the form Eq. (10.349).
First, we lower all indices on the hµν ’s in the potential, so that the background

metric g
(0)
µν appears only through hµν ≡ gµν − g(0)

µν . Once that this done, we
replace all occurrences of hµν with

hµν → Hµν = gµν − g(0)
αβ∂µY

α∂νY
β (10.447)

Next, we once again expand Y α about the identity function:

Y α = xα −Aα (10.448)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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and using gµν = g
(0)
µν + hµν we have

Hµν = hµν + g(0)
να∂µA

α + g(0)
µα∂νA

α − g(0)
αβ∂µA

α∂νA
β (10.449)

We note the sign difference in the quadratic term in A compared with Eq.
(10.438).

Under infinitesimal gauge transformation we have

δAα = −ξα + ξν∂νA
α (10.450)

δhµν = ∇(0)
µ ξν +∇(0)

ν ξµ + Lξhµν (10.451)

where Lξ denotes the Lie derivative. The covariant derivatives are again with

respect to g
(0)
µν . Indices are also lowered/raised with the absolute metric g

(0)
µν .

To linear order, the transformations are

δAα = ξα (10.452)

δhµν = ∇(0)
µ ξν +∇(0)

ν ξµ. (10.453)

When the background is flat, i.e. g
(0)
µν ≡ ηµν , then the replacement becomes

hµν → Hµν = hµν + ∂µAν + ∂νAµ − ∂µAα∂nuAα (10.454)

which is exact. This is unlike Eq. (10.438) where there exist higher order terms
in hµν .

We follow this by (once again) introducing a U(1) symmetry: Aµ → Aµ+∂µφ

to extract the helicity 0 mode. The full expansion this in case (still g
(0)
µν = ηµν)

becomes

Hµν =hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νA

α

∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ. (10.455)

The gauge transformation rules in this case are

δhµν = ∂µξν + ∂νξµ + Lξhµν (10.456)

δAµ = ∂µΛ− ξµ + ξν∂νAµ (10.457)

δφ = −Λ. (10.458)
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Stückelberg formalism by Arkani-Hamed et al. (extra)

In this section, we look at how Arkani-Hamed et al. formulates the Stükelberg’s
trick as “building blocks for gravity in theory space.”

Their construction of the scalar fields φa we just saw is based on “sites” and
“links.” Sites are endowed with different four-dimensional general covariances
(GC). Links are actually link fields with suitable non-linear transformation prop-
erties.

For every site j there is a general coordinate invariance GCj . Each of these
invariances is denoted xµj → fµj (xj) where xj are the coordinates. We assume
(reasonably) that the transformations fj are smooth and invertible.

Link fields allow us to compare objects on different sites, which obey their
local GCj . Recall that a field ψ(x) is a scalar field if it transforms under GC
given by a transformation f as

φ′(x) = φ(f(x)) = φ ◦ f. (10.459)

Similarly, a vector aµ(x) transforms under GC given by f as

a′µ =
∂fα

∂xµ
(x)aα(f(x)). (10.460)

We see how this rule generalizes for tensors.

Now, suppose we want to compare two distinct sites i, j with two different
coordinate invariances GCi and GCj . To do this, we need a mapping from
site i to site j. Define this mapping as the link field Yj←i, or Yji for short.
Schematically, this is

These are not just any Yji, of course. They have to obey the transformation

Yji → f−1
j ◦ Yji ◦ fi (10.461)

where the fk’s are the local GC transformations at i, j.

Suppose we want to compare two fields ψi on site i and ψj on site j. A
logical thing to do is transform ψj into some field Ψ in i using Yji:

Ψ = ψj ◦ Yji. (10.462)

https://arxiv.org/pdf/hep-th/0210184.pdf
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Note that Ψ is in i because its input is in i. And so this new field Ψ transforms
under GCi as

Ψ→ Ψ ◦ fi = Ψ(fi(x
µ)). (10.463)

By the same arguments as before, we can generalize this rule to higher-rank
tensors using Yji. For a vector field ajµ in j, we can form a new vector field Aµ
in i of the form

Aµ(xi) =
∂Y α

∂xµi
(xi)ajα(Yji(xi)). (10.464)

For a tensor, say gjµν(xi) in j, we can form a new tensor Gµν in i of the form

Gµν(xi) =
∂Y α

∂xµi

∂Y β

xνi
gjαβ(Yji(xi)). (10.465)

These transform under GCi of course, since they live in i.

So far the construction has been quite abstract, but this screams diffeo-
morphism invariance, for we require the fields/tensors on one site formed from
fields/tensors on another site to transform correctly under the respective general
coordinate invariances.

Let us consider a special example where we expand Y and G in terms of
pions and see how the two general coordinate invariances are realized explicitly.
Suppose that Yji is just the identity map, i.e.,

Y µji(xi) = xµi . (10.466)

Then of course fi = fj since now Yji is just a map from a space to itself. Now,
let us expand Y around x as

Y α(x) = xα + πα (10.467)

where we have dropped indices to avoid drowning in indices later. This is called
Glodstone boson expansion, and it is exactly what we ust introduced in the
previous section. Here Y plays the role of the scalar fields φ.

With this expansion, any tensor K̄µν in i can be expanded in terms of a
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tensor gjαβ in j as

K̄µν =
∂Y α(x)

∂xµ
∂Y β(x)

∂xν
Kj
αβ(Y (x))

=
∂(xα + πα)

∂xµ
∂(xβ + πβ)

∂xν
Kj
αβ(x+ π)

= (δαµ + ∂µπ
α)(δβν + ∂νπ

β)

(
Kj
αβ + πµ∂µK

j
αβ +

1

2
πµπν∂µ∂νK

j
αβ + . . .

)
= Kj

µν + πλ(∂λg
j
αν) + (∂µπ

α)Kj
αν + (∂νπ

α)Kj
αµ +

1

2
παπβ∂α∂βK

j
µν

+ (∂µπ
α)(∂ν∂

β)Kj
αβ + (∂µπ

α)πβ∂βK
j
αν + (∂νπ

α)πβ∂βK
j
µα + . . .

(10.468)
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10.3.8 Stückelberg Analysis of Interacting Massive Grav-
ity

Decoupling limit and breakdown of linearity
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Ghosts
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Resolution of the vDVZ discontinuity and the Vainshtein mechanism
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Quantum corrections and the effective theory
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10.4 The Λ3 theory

10.4.1 Tuning interactions to raise the cutoff
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10.4.2 The appearance of Galileons and the absence of
ghosts
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10.4.3 The Vainshtein radius
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10.4.4 Th Vainshtein mechanism in the Λ3 theory
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10.4.5 Quantum corrections in the Λ3 theory
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10.5 xACT Tutorial

If you’re already here, you know what xACT is and what you might need it for.
This tutorial is for getting started with some basic xACT computations/manip-
ulations.

10.5.1 Importing packages

Please follow the online instructions for installation. This tutorial assumes a
correct installation of xACT. Quick debugging tip: if somethings goes wrong
with xACT while you’re working with in mathematica, just download a new
copy of xACT and overwrite xACT in the installation folder. That should go
the trick almost always.

Three xACT packages we will need for now are xTensor, xPert, and xTras.
xTensor extends Mathematica’s capabilities in abstract tensor calculus, most
useful for general relativity. However, note that xTensor does not do compo-
nent calculations. It only handles symbol manipulations, including arbitrary
symmetries, covariant derivatives, etc. Once a metric is defined, xTensor also
defines all the associated tensors: Riemann, Ricci, Einstein, Weyl, etc. With
each tensor, we can contract all the way down to scalars.

xPert allows for doing perturbations on a metric. With xPert, we can define
a Lagrangian and vary it with respect to fields to get equations of motion, etc.
xPert handles higher-order perturbations quite well, as we will see later in this
tutorial. xPert is probably useful for linearized gravity, etc.

xTras allows for doing variations with respect to fields. This is useful for,
say, obtaining Einstein’s field equations by varying the Lagrangian with respect
to the (inverse) metric.

Let’s get started. First, we will go ahead and import the necessary packages.
Run the following commands:

<< xACT ‘xTensor ‘

and

<< xACT ‘xPert ‘

The correct corresponding outputs are

<< xACT ‘xTensor ‘
------------------------------------------------------------
Package xAct ‘xTensor ‘ version 1.1.3 , {2018 ,2 ,28}

CopyRight (C) 2002 -2018 , Jose M. Martin -Garcia ,
under the General Public License.
------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer.
This is free software , and you are welcome to redistribute it under certain
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conditions. See the General Public License for details.
------------------------------------------------------------

and

<< xACT ‘xPert ‘
------------------------------------------------------------

Package xAct ‘xPert ‘ version 1.0.6, {2018 ,2 ,28}

CopyRight (C)2005 -2018 , David Brizuela , Jose M. Martin -Garcia and Guillermo A.
Mena Marugan , under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer.
This is free software , and you are welcome to redistribute it under certain
conditions. See the General Public License for details.

------------------------------------------------------------

** Variable $CovDFormat changed from Prefix to Postfix

** Option AllowUpperDerivatives of ContractMetric changed from False to True

** Option MetricOn of MakeRule changed from None to All

** Option ContractMetrics of MakeRule changed from False to True



222 PART 10. LINEARIZED GRAVITY

10.5.2 xTensor Basics

For more information about this package, please check this link for the correct
documentation.

Defining the Basics

There are a number things we need to define before doing anything. The man-
ifold must be defined first:

DefManifold[M4 , 4, {a, b, c, d, e, f, g, h, i, j, k, l}]

The output is

DefManifold[M4 , 4, {a, b, c, d, e, f, g, h, i, j, k, l}]

** DefManifold: Defining manifold M4.

** DefVBundle: Defining vbundle TangentM4.

Just to translate the command into English: the command defines a new
4-dimensional manifold called M4, with a list of indices. The number of indices
are arbitrary, but the more the merrier so we don’t run out of indices. However,
be careful not to use these indices to call something else, like ‘g’ for metric, for
instance.

Once that is done can we define the metric:

DefMetric[-1, gg[-i, -j], cd , {";", "\[Del]"}]

Translation: The -1 stands for the signature of the metric. “gg” is the name of
the metric. We can use “g” but remember that it has been taken in the manifold
definition. “cd” is what we call the covariant derivative. “/[Del]” is the symbol
denoting the covariant derivative. We will see this later.

The correct output should be

DefMetric[-1, gg[-i, -j], cd , {";", "\[Del]"}]

** DefTensor: Defining symmetric metric tensor gg[-i,-j].

** DefTensor: Defining antisymmetric tensor epsilongg[-a,-b,-c,-d].

** DefTensor: Defining tetrametric Tetragg[-a,-b,-c,-d].

** DefTensor: Defining tetrametric Tetragg \[ Dagger][-a,-b,-c,-d].

** DefCovD: Defining covariant derivative cd[-i].

** DefTensor: Defining vanishing torsion tensor Torsioncd[a,-b,-c].

** DefTensor: Defining symmetric Christoffel tensor Christoffelcd[a,-b,-c].

** DefTensor: Defining Riemann tensor Riemanncd[-a,-b,-c,-d].

** DefTensor: Defining symmetric Ricci tensor Riccicd[-a,-b].

** DefCovD: Contractions of Riemann automatically replaced by Ricci.

http://www.xact.es/Documentation/HTML/HTMLLinks/
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** DefTensor: Defining Ricci scalar RicciScalarcd [].

** DefCovD: Contractions of Ricci automatically replaced by RicciScalar.

** DefTensor: Defining symmetric Einstein tensor Einsteincd[-a,-b].

** DefTensor: Defining Weyl tensor Weylcd[-a,-b,-c,-d].

** DefTensor: Defining symmetric TFRicci tensor TFRiccicd[-a,-b].

** DefTensor: Defining Kretschmann scalar Kretschmanncd [].

** DefCovD: Computing RiemannToWeylRules for dim 4

** DefCovD: Computing RicciToTFRicci for dim 4

** DefCovD: Computing RicciToEinsteinRules for dim 4

** DefTensor: Defining weight +2 density Detgg []. Determinant.

There are a few interesting things we can pay attention to in the output. It
is clear that xACT has also defined associated tensors like the Riemann, Ricci
tensor, Ricci scalars, Christoffel symbols, etc. It also defined the determinant,
called “Detgg[]”. This will be useful when we write down the Lagrangian.

With this, we can nwo define some simple objects: scalars, contravariant
vectors, and covariant vectors:

DefTensor[s[], M4]

** DefTensor: Defining tensor s[].

DefTensor[contra[i], M4]

** DefTensor: Defining tensor contra[i].

DefTensor[covar[-i], M4]

** DefTensor: Defining tensor covar[-i].

Here the “-index” denotes a subscript, and “index” denotes a superscript. Defin-
ing something without giving indices makes a scalar. Note that we have to in-
clude the manifold in each of the definitions above.

Next, we can define a two-index tensor:

DefTensor[T[-i, -j], M4, Antisymmetric [{-i, -j}]];

** DefTensor: Defining tensor T[-i,-j].

Here, we are allowed to impose symmetry/antisymmetry on the defined ten-
sor. With our example here, the tensor is anti-symmetric, so we would expect
that

Tij = −Tji. (10.469)

we can verify this:
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In [308]:= T[-i, -j] + T[-j, -i] // ToCanonical

Out [308]= 0

The ToCanonical command allows you to impose symmetry/anti-symmetry
on the outputs. This is basically a “smart simplification” command.

Covariant Derivatives

There is not much we can do with the covariant derivatives. Except showing
that it’s there in the definition of the metric. For example, we can do

∇iTjl (10.470)

in xACT with the following command:

In [312]:= cd[-i][T[-j, -l]]

We can also do a multiple covariant derivative using “@” to denote a com-
position of two derivatives:

In [313]:= cd[-a]@cd[-b]@cd[-c]@T[-d, -e] // ToCanonical

Out [313]= cd[-a][cd[-b][cd[-c][T[-d, -e]]]]

In more readable symbols, this is just

∇a∇b∇cTde. (10.471)

But of course, we haven’t evaluated this. To actually evaluate this expres-
sion, we use the SortCovsD command, which writes everything out in terms
of the Riemann tensor:

In [314]:= cd[-a]@cd[-b]@cd[-c]@T[-d, -e] // ToCanonical // SortCovDs

Out [314]= - Riemanncd[-c, -b, -e, f] cd[-a][
T[-d, -f]] - Riemanncd[-c, -b, -d, f] cd[-a][
T[-f, -e]] - T[-f, -e] cd[-b][
Riemanncd[-c, -a, -d, f]] - T[-d, -f] cd[-b][
Riemanncd[-c, -a, -e, f]] - Riemanncd[-c, -a, -e, f] cd[-b][
T[-d, -f]] - Riemanncd[-c, -a, -d, f] cd[-b][
T[-f, -e]] - Riemanncd[-b, -a, -e, f] cd[-c][
T[-d, -f]] - Riemanncd[-b, -a, -d, f] cd[-c][
T[-f, -e]] + cd[-c][
cd[-b][
cd[-a][
T[-d, -e]]]] - Riemanncd[-b, -a, -c, f] cd[-f][
T[-d, -e]] - Riemanncd[-c, -b, -a, f] cd[-f][
T[-d, -e]]

Not to worry, to actual Mathematica output looks much better:
It is possible for new users that the following output is obtained:
This is because the dollar signs are not screened off. To fix this, simply write

$PrePrint = ScreenDollarIndices;
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then run the code again. Ta-da!

One small test we can run is to check whether the covariant derivative of the
metric is zero:

∇cgab = gab;c = 0. (10.472)

We run the following command:

In [419]:= cd[-a][gg[c, d]]

Out [419]= 0.

Makes sense.

Contract Everything

We know that the Ricci tensor is a contraction of the Riemann tensor:

Rbd = gacRabcd. (10.473)

Let’s verify this in xACT with the ContractMetric command. We also use
the InputForm command to see what xACT actually thinks the output is.

In [309]:= gg[i, k] Riemanncd[-i, -j, -k, -l] // ContractMetric // InputForm

Out [309]= Riccicd[-j, -l]

We can see that xACT is smart enough to recognize the output is a Ricci tensor.
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Good, what about getting the Ricci scalar? We know that

R = gµνRµν . (10.474)

Once again we can check this with/against xACT

In [311]:= gg[j, l] Riccicd[-j, -l] // ContractMetric // InputForm

Out [311]// InputForm=RicciScalarcd []

or without the InputForm command:

Verifying Bianchi’s Second Identity

Bianchi’s Second Identity is given by

Rabcd;e +Rabde;c +Rabec;d = 0 ⇐⇒ ∇eRabcd +∇cRabde +∇dRabec = 0.
(10.475)

To do this in xACT, we first redefine out covariant derivative

DefCovD[CD[-a], {";", "\[Del]"}]

** DefCovD: Defining covariant derivative CD[-a].
** DefTensor: Defining vanishing torsion tensor TorsionCD[a,-b,-c].
** DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[a,-b,-c].
** DefTensor: Defining Riemann tensor RiemannCD[-a,-b,-c,d].
Antisymmetric only in the first pair.
** DefTensor: Defining non -symmetric Ricci tensor RicciCD[-a,-b].
** DefCovD: Contractions of Riemann automatically replaced by Ricci.

Next, we establish a term:

term1 = Antisymmetrize[CD[-e][ RiemannCD[-c, -d, -b, a]], {-c, -d, -e}]

The AntiSymmetrize[expr, {i1, . . . , in}] command antisymmetrizes expr with
respect to the n free indices i1, . . . , in. By convention the result has a factor
(1/n!) multiplying.
It follows that the right hand side is 3 times this term:

bianchi2 = 3 term1 // ToCanonical
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To actually evaluate this, we first expand bianchi2 in terms of the Christoffel
symbols:

exp1 = bianchi2 // CovDToChristoffel

To actually evaluate this, we will have to write the leftover Riemann tensors in
terms of the Christoffel symbols:

exp2 = exp1 // RiemannToChristoffel

And finally, we canonicalize everything (i.e., imposing symmetries of Christof-
fel symbols) to get zero:

In [322]:= exp3 = exp2 // ToCanonical

Out [322]= 0

Not bad at all!
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10.5.3 xPert Basics

Assuming that the reader has successfully imported the xPert package, let’s get
started. For more information about this package, please check this link for the
correct documentation.

Pert, Perturbation, Perturbed, & Order Selection

In order to do anything, we must have had a metric already defined. In this
tutorial, I will be using the “gg” metric from the previous section.

To start, we will define a perturbation hµν to the metric and the amplitude
of this perturbation, called ε. To do this in xPert, we write

DefMetricPerturbation[gg, pert , \[ Epsilon ]]

** DefParameter: Defining parameter \[ Epsilon ].

** DefTensor: Defining tensor pert[LI[order],-a,-b].

What the second line in the output is telling us is that it has also defined per-
turbations of all orders hnµν , where n is the order. With this, we can recall any
perturbation order using the command suggested in the output.

In order to make this “pert” variable printed as hµν in the subsequent out-
puts, we will enforce:

PrintAs[pert] ^= "h";

In general, this can be done such that the output is more readable. But if
the reader is very efficient with reading terribly-named variables, no such en-
forcement is necessary.

From here, there are many many things we can do. First, let’s look what
the second-order perturbation looks like, based on the second output of the
perturbation definition. We expect this to be h2

µν . To do this, we use the
command pert[LI[order], -a,-b] where -a, -b are the subscripts.

In [327]:= pert[LI[2], -a, -b]

Not surprising. Equivalently, we can also run the following command and get
the same output

Perturbation[gg[-a, -b], 2]

Here, we’re basically wanting to looking at perturbation of the metric of a cer-
tain order.

http://www.xact.es/Documentation/HTML/HTMLLinks/
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Okay, so given a perturbation hµν of the metric, gµν , what can we say about
the perturbation of the inverse metric, gµν? Recall the result from GR:

gµν ≈ ηµν + hµν =⇒ gµν ≈ ηµν − hµν . (10.476)

Let’s see if we get the same thing from xACT by running the command

Perturbation[gg[a, b], 1]

However, the output is not very illuminating:

We have to ExpandPerturbation to get a readable output:

This is exactly what we expected. We note that the Perturbation[...] com-
mand only gives us the perturbation part but not the entire perturbed metric.
This is fine, but it is something to keep in mind.

But what if we wanted second, third, fourth, etc. order perturbations? while
this gets much more cumbersome to do by hand, xACT handles perturbations
extremely efficiently. We basically run the code again, only changing the per-
turbation order:

Perturbation[gg[a, b], 2] // ExpandPerturbation

Perturbation[gg[a, b], 4] // ExpandPerturbation

Second-order perturbation:

Fourth-order perturbation:

Like I have mentioned, the Perturbation[...] command only gives the per-
turbation piece of the new metric. To get the full, newly perturbed, metric, we
use the Perturbed[gg[-a,-b], order] command. For example, the perturbed
metric, up to third order is

Perturbed[gg[-a, -b], 3]
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The perturbed inverse metric up to third order is

Perturbed[gg[a, b], 3] // ExpandPerturbation

Just for sanity check, we can get the first-order perturbed metric and inverse
metric with

Perturbed[gg[-a, -b], 1]

Perturbed[gg[a, b], 1] // ExpandPerturbation

Very nice!

There is also a way for us to pick out only the low-order perturbations in
a higher-order perturbed metric. With the following command, we are able to
pick out only the first-order perturbations from a third-order perturbed metric:

firstorderonly = pert[LI[n_], __] :> 0 /; n > 1;
Perturbed[gg[-a, -b], 3] /. firstorderonly
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Review of Variational Derivatives

Lets do a quick review of the variational derivative. In mathematics, the varia-
tional derivative is referred to as the functional derivative. Here we will consider
variational derivative in the context of Lagrangian mechanics.

Suppose we have an ordinary functional action in flat 3d:

S[φ] =

ˆ
dtL[φ(t), φ̇(t), t]. (10.477)

The variational derivative of the action is given by δS/δt. Since we require
this derivative to vanish at the extrema, we obtain the Euler-Lagrange by setting
the integrand to zero:

δS

δy
= 0 =⇒ δ

δφ

(
L[φ(t), φ̇(t), t]

)
=

∂L
∂φ
− d

dt

∂L
∂φ̇

= 0 (10.478)

In general, for

J [y(x)] =

ˆ
dx f [x, y(x), y′′(x), . . . , y(n)(x)], (10.479)

the variational derivative of J with respect to y is given by

δJ

δy
=
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
− · · ·+ (−1)n−1 d

n

dxn
∂f

∂y(n)
(10.480)

In general relativity, we no longer get the regular d/dx derivatives. Instead,
we work with covariant derivatives. This means the Lagrangian density in a
general action

S[φ] =

ˆ
d4x
√
−gL̂ (10.481)

depends on the field, the covariant derivative of the field, and the “independent
variable” xν a vector in spacetime.

L̂ = L̂[φ(xν),∇µφ(xν), xν ]. (10.482)

With this, when we take the variational derivative of S[φ] with respect to the
field φ and set it to zero to obtain an equation of motion, we have to change the
regular d/dx derivatives to covariant derivatives (which depend on Christoffel
symbols):

δS

δy
= 0 =⇒ ∂(L̂

√
−g)

∂φ
−∇µ

(
∂(L̂
√
−g)

∂(∇µφ)

)
= 0 (10.483)
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Note that we can actually skip a step here and remove the
√
−g term because it

is a constant in this problem (we are varying the field). However, the
√
−g will

become important (i.e., has non-trivial derivative) when we do variations with
respect to the metric. This has been done in the CFT notes, but we will do it
again using xACT later in the section on xTras.

Here we will just recall how the covariant derivative is defined in GR. The
covariant derivative of a contravariant vector λa with respect to a contravariant
vector xc is given by

λa;c ≡ ∇cλa =
∂λa

∂xc
+ Γabcλ

b ≡ ∂cλa + Γabcλ
b (10.484)

With reviews out of the way, we will look at how to define and use varia-
tional derivatives in xACT. First, we notice that variational derivatives are
taken with respect to some field/metric, and are defined alongside with some
covariant derivative (associated with existing Christoffel symbols, metric, etc).
This means to get a variational derivative (varD) we will need (1) the field/-
metric and (2) the existing covariant derivative (CovD).

Here are some examples of the VarD command:

s /: VarD [metricg [a_,b_], PD][s[], rest_] := - rest/2 metricg[-a,-b]s[]

Length [result = Expand @ VarD [metricg [a,b], PD][ s[]rs]]

result = VarD [MaxwellA[a], PD][s[] %]

In the next section(s), we will encounter an example where we vary a La-
grangian with respect to a scalar field in a perturbed metric to obtain an equa-
tion of motion.

Scalar Fields, Lagrangian, Varying the Lagrangian

Here’s the layout of this subsection. We would like to, in the end, get some
kind of physical result we are familiar with such as conservation of energy or
the Einstein field equation or some sort of equation of motion that we know
exists.

Let’s first set up some theory before actually doing the calculations and
getting lost in the symbols. Consider the Lagrangian for the scalar field φ:

L =
√
−g
(
m2R

2
− V (φ)− 1

2
∇bφ∇bφ

)
. (10.485)

We would like to input this into xACT and look at a the perturbed Lagrangian
when we perturb the metric. In order to do this, we first define the scalar field
φ, the potential V (φ), and the constant mass, m:

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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DefScalarFunction[V]
** DefScalarFunction: Defining scalar function V.
DefConstantSymbol[massP]
** DefConstantSymbol: Defining constant symbol massP.
PrintAs[massP] ^= "m";

With this we can define the Lagrangian:

L = Sqrt[-1* Detgg []]*( massP ^2* RicciScalarcd []/2 -
V[sf[]] - (1/2)* cd[-b][sf[]]*cd[b][sf[]])

xACT gives us a nice symbolic output of the Lagrangian, which matches what
we want:

Before actually doing any variations, we also have to define the variation of
the scalar field and make it appear as δφ

DefTensorPerturbation[pertsf[LI[order]], sf[], M4]
PrintAs[pertsf] ^= "\[Delta ]\[Phi]";

Time to do some variations. This requires the Perturbation command:

varL = L // Perturbation

To get the full expression, we have to expand on the result:

varL = L // Perturbation // ExpandPerturbation

There are a bunch of terms with the metric flying around, so we will contract
with the metric:

varL = L // Perturbation // ExpandPerturbation // ContractMetric

Finally, we enforce canonical relations to remove the leftover abundant terms:

varL = L // Perturbation // ExpandPerturbation // ContractMetric //
ToCanonical
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Now that we have the perturbed Lagrangian. What we want next the equa-
tion of motion. Recall that the action is given by

S =

ˆ
d4xL =

ˆ
d4x
√
−gL̂. (10.486)

The associated Euler-Lagrange equation is

∂L̂
∂φ
−Dµ

(
∂L̂

∂(Dµφ)

)
=
δL̂
δφ

= 0 (10.487)

We translate this equation as “the variational derivative of L̂ with respect to
the field is zero.” With our current Lagrangian density:

L =
√
−g
(
m2R

2
− V (φ)− 1

2
∇bφ∇bφ

)
, (10.488)

the Lagrangian of which we want to take derivatives is

L̂ =
1√
−g
L =

m2R

2
− V (φ)− 1

2
∇bφ∇bφ. (10.489)
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It follows that the equation of motion is obtained from taking variational deriva-
tive of L̂ with respect to φ and set it to zero.

Next, recall from Section 8.2 of the CFT notes that the equation of motion
for the scalar field theory is

∇µ∇µφ−
dV

dφ
= 0 (10.490)

We would like to obtain this result, using only xACT.

Let’s start by taking the variational derivative of L̂ with respect to φ and
set it to zero. We do this with a simple command:

0 == VarD[pertsf[LI[1]], cd][varL]/Sqrt[-Detgg []]

where we explicitly divide the original L by
√
−g to get L̂, then take the vari-

ational derivative of L̂. The variation derivative is define by two objects: the
field with respect to which the derivative is taken, and the covariant derivative
associated with the metric. This is because as we saw before

∂L̂
∂φ
−Dµ

(
∂L̂

∂(Dµφ)

)
=
δL̂
δφ

(10.491)

To simply the output above, we impose canonical relations:

0 == VarD[pertsf[LI[1]], cd][varL]/Sqrt[-Detgg []] // ToCanonical

By enforcing the Kronecker delta relation:

delta[-LI[1], LI[1]] -> 1;

This simplifies to the equation of motion we wanted:

So things work as we wanted.

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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10.5.4 xTras Basics: Metric Variations

xTras handles variations with respect to the (inverse) metric. Two of its com-
mands that we will be using here are: VarD and VarL. VarD stands for vari-
ational derivative, whose definition includes the (inverse) metric and the as-
sociated covariant derivative. For our purposes, VarD acts on the Lagrangian
L =

√
−gL̂. VarL is also a variational derivative, except that it acts on the

Lagrangian density L̂.
The output of VarD[L] and VarL[L̂] should only differ by a factor of

√
−g.

By default,

VarD[g[-a,-b]], CD[L] returns
δL
δgab

(10.492)

VarL[g[-a,-b]], CD[L̂] returns
1√
−g

δ(
√
−gL̂)

δgab
(10.493)

where of course L =
√
−gL̂ as always.

Of course, we can also do variations with respect to the inverse metric.

VarD[g[a,b]], CD[L] returns
δL
δgab

(10.494)

VarL[g[a,b]], CD[L̂] returns
1√
−g

δ(
√
−gL̂)

δgab
(10.495)

With this, we can head over to Mathematica.

The first we’d like to do is import the packages. To avoid possible package-
missingness, we will just go ahead and import all three packages we know:
xTensor, xPert, and now xTras.

<< xACT ‘xTensor ‘
<< xACT ‘xPert ‘
<< xACT ‘xTras ‘

There is nothing interesting to see in the outputs of these commands so I won’t
go into them now.

The next thing to do is of course defining the manifold on which is the metric
will be defined:

DefManifold[M4 , 4, {a, b, c, d, e, i, j, k, l, m, n, p}]

** DefManifold: Defining manifold M4.

** DefVBundle: Defining vbundle TangentM4.

Here we have are to give as many indices as we can, so why not.

Next, we would like to define the metric. But before doing so, we have to
allow for metric perturbation in the metric definition. This is the feature in
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xTras that the other packages don’t have. Once this is done, we can define the
metric as usual:

In[5]:= DefMetricPerturbation /. Options@DefMetric

Out [5]= True

In[6]:= DefMetric[-1, g[-a, -b], CD, {";", "\[Del]"}]

During evaluation of In[6]:= ** DefTensor: Defining symmetric
metric tensor g[-a,-b].

<<< truncated output here >>>

During evaluation of In[6]:= ** DefTensor: Defining weight +2 density Detg [].

During evaluation of In[6]:= ** DefParameter: Defining parameter
PerturbationParameterg.

During evaluation of In[6]:= ** DefTensor: Defining tensor
Perturbationg[LI[order],-a,-b].

We notice that at the very end of the output the tensor Perturbationg[LI[order],-
a,-b] is defined. This allows us to do Lagrangian variations with respect to the
metric.

Now that we have the metric. We can construct some (simple enough)
Lagrangians and try to obtain some equation of motions.

Example: Einstein Field Equations, Λ 6= 0

First we construct the Lagrangian from L̂. We will do variations with VarD and
VarL. We expect to get the same equation of motion either way.

In theory, we have

L̂ = (R− 2Λ) L =
√
−gL̂. (10.496)

And so in Mathematica:

DefConstantSymbol [\[ CapitalLambda ]]

** DefConstantSymbol: Defining constant symbol \[ CapitalLambda ].

LagHatCosmo := LagHatRicci - 2*\[ CapitalLambda]

LagCosmo := Sqrt[-Detg []]*( LagHatRicci - 2*\[ CapitalLambda ])

eom3 := VarD[g[-a, -b], CD][ LagCosmo]

eom3/Sqrt[-Detg []] == 0 // ContractMetric

eom4 := VarL[g[-a, -b], CD][ LagHatCosmo]

eom4 == 0 // ContractMetric

To get the equation of motion in the correct form when working with L, we
will need to divide out

√
−g in the end because it’s not taken care of by VarD.

Not surprisingly, we get



238 PART 10. LINEARIZED GRAVITY

For the forgetful reader, the Einstein field equation is given by

Rµν − 1

2
gµνR+ Λgµν = 0 (10.497)

where Rµν is the Ricci (upper?) tensor, gµν is the inverse metric, Λ is the cos-
mological constant, and R is the Ricci scalar.

In the other covariant form with the inverse metric, the Einstein field equa-
tions look exactly the same, except for the inverted indices:

Rµν −
1

2
gµνR+ Λgµν = 0 (10.498)

This could be obtained in exactly the same fashion with xACT, except that
the metric used in VarD and VarL are now the inverse metric:

eom3 := VarD[g[a, b], CD][ LagCosmo]

eom3/Sqrt[-Detg []] == 0 // ContractMetric

eom4 := VarL[g[a, b], CD][ LagHatCosmo]

eom4 == 0 // ContractMetric

Example: The weak field action

From Sean Carroll’s Spacetime & Geometry, or from the CFT notes, we have
seen the weak field action:

S =

ˆ
d4x
√
−gL =

ˆ
d4xL (10.499)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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where

L =
1

2

[
(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)− 1

2
ηµν(∂µh)(∂νh)

]
.

(10.500)

We know that when requiring δS = 0 ⇐⇒ δS/δhµν = 0, i.e., the variational
derivative of S with respect to hµν is zero, we get the Einstein tensor Gµν given
by

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(10.501)

Let’s check this in xACT, as an exercise in indexing and of course in using
xACT. Here are the things we will need to do, in order: (1) importing the pack-
ages, (2) defining the manifold, (3) turning on the metric variations option, (4)
defining the metric ηµν (don’t worry about making it Minkowskian), (5) defin-
ing the perturbation hµν , (6) defining the Lagrangian, (7) taking the variational
derivative of the Lagrangian with VarD (assuming

√
−η = 1, of course).

... (import packages here)

...
DefManifold[M4 , 4, {a, b, c, d, e, f, i, k, l, m, n}]

DefMetricPerturbation /. Options@DefMetric

DefMetric[-1, \[Eta][-a, -b], CD, {"%", "\[Del]"}]

DefMetricPerturbation [\[Eta], h, \[ Epsilon ]]

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

Here’s what we get:
Putting this back into LATEX after doing some manual contractions/simplifi-

cations, plus noting that the covariant derivative here is just the regular partial
derivative, we find that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
(10.502)

which matches exactly with the Einstein tensor Gµν provided earlier.
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Note that when calling the perturbation metric hµν in xACT, make sure
that you are calling it by h[LI[order],-m,-n], so that xACT knows you mean
to call the perturbation metric.
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10.5.5 Undefining Basics: Playtime’s Over!

This is not a recommendation. This is something we have to do before once we
are done with a calculation session, unless we are absolutely sure you will not
need a separate sheet for other calculations.

It looks like xACT remembers all definitions, even after we have deleted/put
away an old Mathematica notebook and opened a new one.

To ask Mathematica for the currently defined objects, use the following
command:

?Global ‘*

This is will give a bunch of defined symbols and objects, some of which have
been manually defined by the user. Our job now is to undefine these. To do
this correctly, we have to do this in the correct order, as some of these objects’
existence depends on others’ existence.

First, we undefine all tensors (excluding the metric, including all scalars), all
scalars, all scalar functions, and all constant symbols. These don’t necessarily
have be in any order.

UndefTensor /@ {contra , covar}

UndefTensor[pert]

UndefTensor[pertsf]

UndefTensor[sf]

UndefTensor[T]

UndefTensor[s]

We then undefine all user-defined covariant derivatives

UndefCovD[CD]

Then we undefine the scalar functions:

UndefScalarFunction[V]

and constant symbols

UndefConstantSymbol[massP]

Now can we undefine the metric:

UndefMetric[gg]

Finally can we undefine the manifold:

UndefManifold[M4]

With that, we can be sure nothing will go wrong the next time we launch a
new notebook for GR calculations.


	Preface
	Introduction to the Lagrangian and the Principle of Least Action
	A Classical-Mechanical Example

	Group Theory: a quick guide in a quick guide
	Introduction to Classical Field Theory
	Relativistic Notation
	Classical Lagrangian Field Theory
	Quantized Lagrangian Field Theory (primer)
	Symmetries and Conservation Laws (primer)

	Gauge Invariance
	Introduction
	Gauge Invariance in Classical Electrodynamics
	Phase Invariance in Quantum Mechanics
	Significance of Potentials in Quantum Theory
	The Aharonov-Bohm Effect & The Physical Vector Potential
	Path-dependent Phase Factors

	Phase Invariance in Field Theory

	Lagrangian Field Theory in Flat Spacetime
	Real Scalar Fields
	Complex Scalar Fields and Electromagnetism
	Gauge transformation of the first kind - Global Symmetry
	Gauge transformation of the second kind - Local Symmetry
	Motivations in the derivation of the E&M Lagrangian
	A few remarks

	Vector Fields and Photons

	Symmetries and Conservation Laws in Field Theory
	Hamiltonian formalism (primer)
	Overview of Noether's Theorem: A Consequence of Variational Principle
	Noether's Theorem on Symmetries and Conservation Laws
	Space-time translations
	Lorentz transformations
	Internal symmetries


	Spontaneous Symmetry Breaking
	Introduction
	Continuous Global Symmetry
	An O(2) example
	Introduction to the Higgs Mechanism

	Gravitation and Lagrangian Formulation of General Relativity
	Review of General Relativity & Curved Spacetime
	General Relativity
	Curved Spacetime

	Lagrangian Formulation
	Overview
	Introduction to the Lagrangian Formulation of General Relativity
	Variation on the metric tensor, without matter: T = 0
	Variations on the metric tensor, with matter: T =0

	Properties of Einstein Equations

	Diffeomorphism, Vierbein Formalism, and general spacetime symmetries
	Overview of Diffeomorphisms and the Lie Derivative
	Spacetime Symmetry
	Global Lorentz Transformations in Minkowski Spacetime
	Diffeomorphism in Curved Spacetime
	Local Lorentz Transformation & Vierbein Formalism
	Riemann-Cartan spacetime


	Linearized Gravity
	The metric
	The Christoffel symbols and Einstein tensor
	Massive Gravity
	A Brief History
	Quick review of Field Dimensions
	Fierz-Pauli Massive Gravity
	Fierz-Pauli Massive Gravity with Source
	The Stückelberg Trick
	Nonlinear Massive Gravity
	The Nonlinear Stückelberg Formalism
	Stückelberg Analysis of Interacting Massive Gravity

	The 3 theory
	Tuning interactions to raise the cutoff
	The appearance of Galileons and the absence of ghosts
	The Vainshtein radius
	Th Vainshtein mechanism in the 3 theory
	Quantum corrections in the 3 theory

	xACT Tutorial
	Importing packages
	xTensor Basics
	xPert Basics
	xTras Basics: Metric Variations
	Undefining Basics: Playtime's Over!



